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Loops on surfaces, Feynman diagrams, and trees
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Abstract

We relate the author’s Lie cobracket in the module additively generated by loops on a surface with
the Connes–Kreimer Lie bracket in the module additively generated by trees.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In 1989, the author introduced for any oriented surface�, a Lie cobracketν in the module
Z = Z(�) generated by the homotopy classes of loops on�, see[7,8]. The cobracketν
complements the Goldman Lie bracket inZ and makesZ into a Lie bialgebra in the sense
of Drinfeld. One of the main results of[8] is an algebraic quantization of this Lie bialgebra
in terms of a Hopf algebra of knots in�× R. The Goldman Lie bracket has a transparent
geometric nature: it is a reformulation of the Poisson bracket determined by the symplectic
structure on the Teichm̈uller space (and/or other similar moduli spaces). On the other hand,
the geometric nature of the cobracketν remained mysterious. We argue here that the reason
for the existence of this cobracket is that generic loops on� can be viewed as Feynman
diagrams (of a rather special type). More precisely, we relateν to the pre-Lie algebras and
Hopf algebras of rooted trees introduced by Connes and Kreimer[2] in their fundamental
work on the algebraic foundations of the perturbative quantum field theory. We introduce
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similar algebras generated by generic loops on� and define their canonical projection to the
Connes–Kreimer algebras.Sections 2–7deal with the Lie and pre-Lie (co)algebras arising
in this theory.Section 8is devoted to the associated Hopf algebras. In the lastSection 9,
we consider similar algebraic structures in the realms of Wilson loops and knot diagrams
on�. Throughout the paper, we fix a commutative ring with unitR. The symbol⊗ denotes
the tensor product ofR-modules overR. The symbol� denotes a smooth oriented surface
(possibly with boundary).

2. Lie and pre-Lie coalgebras

We recall the algebraic language of pre-Lie and Lie coalgebras used systematically in
the paper.

2.1. Lie coalgebras

For anR-moduleL, denote by PermL the permutationx⊗ y �→ y ⊗ x in L⊗2 = L⊗ L

and byτL the permutationx⊗ y ⊗ z �→ z⊗ x⊗ y in L⊗3 = L⊗ L⊗ L. A Lie algebra
overRcan be defined as anR-moduleLendowed with anR-homomorphism (the Lie bracket)
θ : L⊗2 → L such thatθ ◦ PermL = −θ and (the Jacobi identity)

θ ◦ (idL ⊗ θ) ◦ (idL⊗3 + τL + τ2
L) = 0 ∈ HomR(L⊗3, L)

Here, for a setSwe denote by idS the identity mappingS → S.
Dually, aLie coalgebraoverR is anR-moduleA endowed with anR-homomorphism

(the Lie cobracket)ν : A→ A⊗2 such that PermA ◦ ν = −ν and

(idA⊗3 + τA + τ2
A) ◦ (idA ⊗ ν) ◦ ν = 0 ∈ HomR(A,A⊗3) (2.1.1)

A Lie coalgebra (A, ν) gives rise to thedual Lie algebraA∗ = HomR(A,R), where the
Lie bracket is the homomorphismA∗ ⊗ A∗ → A∗ adjoint toν. Fora, b ∈ A∗, the bracket
[a, b] ∈ A∗ evaluates onx ∈ A by

[a, b](x) =
∑
i

a(x(1)
i )b(x(2)

i ) ∈ R (2.1.2)

for any (finite) expansionν(x) =∑i x
(1)
i ⊗ x

(2)
i ∈ A⊗ A.

A Lie coalgebra homomorphism(A, ν) → (A′, ν′) is anR-linear homomorphismf :
A→ A′ such thatν′f = (f ⊗ f )ν. The adjoint mapf ∗ : (A′)∗ → A∗ is then a Lie algebra
homomorphism.

2.2. Pre-Lie algebras and coalgebras

Pre-Lie algebras were introduced by Gerstenhaber[4] and Vinberg[11] independently.
A (left) pre-Lie algebra overR is anR-moduleL endowed with anR-bilinear multiplication
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L× L→ L, denoted�, such that for anyx, y, z ∈ L,

(x � y) � z− x � (y � z) = (y � x) � z− y � (x � z) (2.2.1)

There is a similar notion of right pre-Lie algebras. We will consider only left pre-Lie
algebras and refer to them simply as pre-Lie algebras. Equality(2.2.1)implies that [x, y] =
x � y − y � x is a Lie bracket inL.

A pre-Lie algebra homomorphism(L, �) → (L′, �′) is anR-linear homomorphismf :
L→ L′ such thatf (x � y) = f (x) �′ f (y) for all x, y ∈ L.

Dualizing formula(2.1.1), we obtain a notion of a pre-Lie coalgebra. A (left)pre-Lie
coalgebrais anR-moduleA endowed with anR-linear homomorphismρ : A→ A⊗ A

such that

(idA⊗3 − P
1,2
A ) ((ρ ⊗ idA)ρ − (idA ⊗ ρ)ρ) = 0 ∈ HomR(A,A⊗3) (2.2.2)

whereP1,2
A is the endomorphism ofA⊗3 permuting the first and second tensor factors. Given

a pre-Lie coalgebra (A, ρ), the dual moduleA∗ = HomR(A,R) acquires a structure of a
pre-Lie algebra: fora, b ∈ A∗, the value ofa � b ∈ A∗ onx ∈ A is given by the right-hand
side of formula(2.1.2)for any expansionρ(x) =∑i x

(1)
i ⊗ x

(2)
i ∈ A⊗ A.

Lemma 2.2.1. For any pre-Lie coalgebra(A, ρ), the homomorphismν = ρ − PermAρ :
A→ A⊗2 is a Lie cobracket.

Proof. It is obvious that PermA ◦ ν = −ν. Formula(2.1.1)follows from the identity

(idA⊗3 + τA + τ2
A) ◦ (idA ⊗ ν) ◦ ν = −(idA⊗3 + τA + τ2

A) ◦ (idA⊗3 − P
1,2
A )

◦ ((ρ ⊗ idA)ρ − (idA ⊗ ρ)ρ)

which holds forany R-linear homomorphismρ : A→ A⊗2 andν = ρ − PermAρ. �
A pre-Lie coalgebra homomorphism(A, ρ) → (A′, ρ′) is anR-linear homomorphism

f : A→ A′ such thatρ′f = (f ⊗ f )ρ. The adjoint mapf ∗ : (A′)∗ → A∗ is then a pre-Lie
algebra homomorphism. The reader should always keep in mind that a pre-Lie coalgebra
homomorphismf is always a Lie coalgebra homomorphism of the associated Lie coalgebras
and its adjointf ∗ is a Lie algebra homomorphism of the dual Lie algebras.

3. Pre-Lie coalgebra of loops

We define a pre-Lie coalgebra of loops on a smooth oriented surface�.

3.1. Loops and Feynman diagrams

A generic loopon � is a smooth immersionα : S1 → �− ∂� having only double
transversal self-crossings. The set of the self-crossings ofα is denoted #α; it is always
finite. We will consider only generic loops and refer to them simply as loops. The circle
S1 = {z ∈ C| |z| = 1} is oriented counterclockwise, this makes all loops oriented. Apointed
loop is a pair (a loopα on�, a point∗α ∈ α(S1)− #α). The latter point is called thebase
pointof α.
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Two pointed loopsα, β on � can be obtained from each other byreparametrization
if ∗α = ∗β and there is an orientation preserving homeomorphismf : S1 → S1 such that
β = αf . Pointed loopsα, β on � areambient isotopicif there is a continuous family of
homeomorphisms{ht : �→ �}t∈[0,1] such thath0 = id�, β = h1α, and∗β = h1(∗α). We
say that two pointed loops on� are isotopic if they can be obtained from each other by
ambient isotopy and/or reparametrization. For example, slightly pushing∗α alongα(S1)−
#α we obtain a pointed loop isotopic to (α, ∗α). It is clear that isotopy of loops is an
equivalence relation. We shall usually identify loops with their isotopy classes.

We shall also consider loops which are only piecewise smooth. This should create no
problem since the non-smooth points (looking like corners of a broken line) will be finite in
number and distinct from crossing points. All such loops can be smoothed in the obvious
way.

Any loop α on� gives rise to a Feynman diagram. It is formed by the circleS1 and a
set of straight segments{ep}p∈#α. The endpoints ofep are the two (distinct) points of the
setα−1(p) ⊂ S1. The segments{ep}p lie in the unit diskD2 = {z ∈ C | |z| ≤ 1} and have
distinct endpoints but may meet insideD2. We say thatp, q ∈ #α arelinkedif ep ∩ eq �= ∅
andunlinkedif ep ∩ eq = ∅. We shall see below that the segments{ep}p can be naturally
oriented. The Feynman diagram (S1, {ep}p) is well known in knot theory as theGauss
diagramof α. In the physical language, the circleS1 represents a fermion and the segments
{ep}p represent photons. Note that in this picture the photons do not interact with each
other.

3.2. Pre-Lie comultiplication for loops

LetL = L(�) be theR-module freely generated by the set of isotopy classes of pointed
loops on�. Elements ofL are finite formal linear combinations of such isotopy classes
with coefficients inR. We define a pre-Lie comultiplicationρ : L→ L⊗2.

We shall use the following notation: for two distinct pointsP,Q ∈ S1, denote byPQ
the oriented embedded arc inS1 which starts atP, goes in the positive (counterclockwise)
direction and terminates atQ. Clearly,PQ ∪QP = S1 andPQ ∩QP = {P,Q}. For a loop
α : S1 → �, denote byαP,Q the path in� obtained by restrictingα to the arcPQ.

It suffices to defineρ : L→ L⊗2 on the basis ofL. Consider the generator ofL presented
by a pointed loop (α : S1 → �, ∗α ∈ α(S1)). This loop traverses every pointp ∈ #α twice
in two different tangent directions. The setα−1(p) ⊂ S1 consists of two pointsp1, p2 ∈ S1

numerated so that starting atα−1(∗α) ∈ S1 and moving alongS1 counterclockwise we first
meetp1 and thenp2. The pathαp1,p2 (resp.αp2,p1) is a closed loop on� which starts off
atp in one of the two tangent directions mentioned above and follows alongα until the first
return top. The loopαp2,p1 goes through∗α and we take∗α as its base point. As the base
point ofαp1,p2 we takep. Setεp = +1 if the pair (the positive tangent direction ofα atp1,
the positive tangent direction ofα at p2) is positive with respect to the orientation of�.
In the opposite case, setεp = −1. Note thatεp and the numerationp1, p2 depend on the
choice of∗α. Finally, set

ρ(α, ∗α) =
∑
p∈#α

εp(αp1,p2, p)⊗ (αp2,p1, ∗α) (3.2.1)
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Lemma 3.2.1.The homomorphismρ : L→ L⊗2 is a pre-Lie comultiplication.

Proof. We verify formula(2.2.2)for A = L. Pick a pointed loopα on�.
A direct application of the definitions shows that both (ρ ⊗ id)ρ(α) and (id⊗ ρ)ρ(α) are

sums of certain expressions numerated by pairs of unlinked crossingsp, q ∈ #α. Pick such
a pairp, q. Starting atα−1(∗α) and moving alongS1 counterclockwise, we meet the points
p1, p2, q1, q2 in a certain order such thatp1 appears beforep2 andq1 appears beforeq2.
Exchanging if necessary the letterspandq, we can assume that the first point we meet isp1.
Then, the order in question is either (i)p1, p2, q1, q2 or (ii) p1, q1, q2, p2. The contribution
of p, q to ρ(α) is εp(αp1,p2, p)⊗ (αp2,p1, ∗α)+ εq(αq1,q2, q)⊗ (αq2,q1, ∗α). In the case (i),
the contribution ofp, q to (ρ ⊗ id)ρ(α) is 0 and the contribution ofp, q to (id⊗ ρ)ρ(α) is

εpεq(αp1,p2, p) ⊗ (αq1,q2, q)⊗ (αp2,q1αq2,p1, ∗α)+ εpεq(αq1,q2, q)⊗ (αp1,p2, p)

⊗ (αq2,p1αp2,q1, ∗α)

Here,αp2,q1αq2,p1 andαq2,p1αp2,q1 are the loops obtained as products of the pathsαp2,q1

andαq2,p1. Note that up to reparametrizationαp2,q1αq2,p1 = αq2,p1αp2,q1.
In the case (ii), the contributions ofp, q to (ρ ⊗ id)ρ(α) and (id⊗ ρ)ρ(α) are both equal

to

εpεq(αq1,q2, q)⊗ (αp1,q1αq2,p2, p)⊗ (αp2,p1, ∗α)

In both cases, the contribution of the pairp, q to ((ρ ⊗ id)ρ − (id ⊗ ρ)ρ)(α) is invariant
under the permutation of the first and second tensor factorsP1,2 and is therefore annihilated
by id− P1,2. This proves(2.2.2). �

The pre-Lie comultiplicationρ induces by antisymmetrization a Lie cobracketν in L.
On the basis ofL,

ν(α, ∗α) =
∑
p∈#α

εp((αp1,p2, p)⊗ (αp2,p1, ∗α)− (αp2,p1, ∗α)⊗ (αp1,p2, p)) (3.2.2)

The resulting Lie coalgebra and the dual Lie algebra were introduced in[7,8], cf.
Section 7.

4. Connes–Kreimer pre-Lie coalgebras

We recall (in a convenient form) and generalize the definitions of Connes and Kreimer.

4.1. Pre-Lie coalgebra of rooted trees

Connes and Kreimer[2] introduced a Lie algebra additively generated by rooted trees.
They observed that the Lie bracket in this Lie algebra is obtained by antisymmetrization of
a pre-Lie multiplication. We describe here the dual pre-Lie comultiplication.

By a tree we mean a finite tree. The set of edges of a treeT is denoted edg(T ). A
treeTwith a distinguished vertex isrooted, the distinguished vertex being theroot of T. A
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homeomorphismof rooted trees is a homeomorphism of trees mapping vertices onto vertices,
edges onto edges, and the root into the root. LetT be theR-module freely generated by the
set of homeomorphism classes of rooted trees.

Given an edgeeof a rooted treeT, we obtain two other rooted trees as follows. Removing
(the interior of)e fromT, we obtain a graphT − e having the same vertices asT. This graph
consists of two disjoint treesT 1

e andT 2
e numerated so that the root ofT lies onT 2

e . The root
ofTprovides a root forT 2

e . As the root ofT 1
e , we take the only vertex ofT 1

e adjacent toeinT.

Lemma 4.1.1.The formulaρ(T ) =∑e∈edg(T ) T
1
e ⊗ T 2

e defines a pre-Lie comultiplication

ρ : T → T ⊗2.

We shall prove a more general statement in the next subsection.
Antisymmetrizingρ, we obtain a Lie cobracketν : T → T ⊗2. Dualizingρ andν, we

obtain a pre-Lie multiplication� and a Lie bracket inT ∗ = HomR(T , R). Note that the
R-moduleT is based and therefore can be identified with the submodule ofT ∗ consisting
of thoseR-linear functionalsT → R which are non-zero only on a finite set of (homeo-
morphism classes of) rooted trees. More precisely, a rooted treeT is identified with the
functionalT → R taking value 1 onT and value 0 on all other elements of the basis. It is
easy to check thatT � T ⊂ T ⊂ T ∗ so thatT acquires the structure of a pre-Lie algebra.
This structure and the associated Lie bracket were first defined in[2].

4.2. Further pre-Lie coalgebras of trees

The pre-Lie coalgebraT can be generalized using various additional structures on trees.
We describe a general setting for such generalizations.

By a subtreeof a treeT, we mean a treeT ′ ⊂ T formed by a set of vertices and edges
of T. If T is rooted thenT ′ has a unique vertexv such that any path from the root ofT to a
point ofT ′ passes throughv. We take thisv as the root ofT ′. In this way, all subtrees of a
rooted tree become rooted.

We define a categoryRTrees whose objects are rooted trees and whose morphisms are
embeddings. Anembeddingof rooted treesj : T ′ → T is a homeomorphism ofT ′ onto a
subtree ofT. (Suchj sends vertices, edges, and the root ofT ′ onto vertices, edges, and the root
of the subtreej(T ′) ⊂ T .) For example, homeomorphisms of rooted trees are embeddings.

A rooted tree-structureis a contravariant functor from the categoryRTrees to the category
of sets. Such a functorϕ assigns to any rooted treeT a setϕ(T ) and to any embeddingj :
T ′ → T a mapϕ(j) : ϕ(T ) → ϕ(T ′). We must haveϕ(idT ) = idϕ(T ) andϕ(jj′) = ϕ(j′)ϕ(j)
for any embeddingsj′ : T ′′ → T ′ andj : T ′ → T . We give two examples of a rooted tree-
structure.

(a) (A labeling): The setϕ(T ) consists of all labelings of vertices and edges ofTby elements
of certain setsS0 andS1, respectively. The mapϕ(j) : ϕ(T ) → ϕ(T ′) is the obvious
restriction of labelings.

(b) (A planar structure): The setϕ(T ) consists of all topological embeddingsi : T → R2

considered up to composition with an orientation preserving homeomorphismR
2 →

R
2. The mapϕ(j) : ϕ(T ) → ϕ(T ′) is defined byϕ(j)(i) = ij.
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Given a rooted tree-structureϕ, we define arootedϕ-treeto be a pair (a rooted treeT, an
elements ∈ ϕ(T )). Two such pairs (T, s), (T̃ , s̃) are homeomorphic if there is a homeomor-
phismj : T → T̃ such thatϕ(j)(s̃) = s. For a subtreeT ′ ⊂ T , sets|T ′ = ϕ(j)(s) ∈ ϕ(T ′),
wherej is the embeddingT ′ ↪→ T .

For any rooted tree-structureϕ, we define a(generalized) Connes–Kreimer pre-Lie coal-
gebra(T (ϕ), ρ). Here,T (ϕ) is theR-module freely generated by the set of homeomorphism
classes of rootedϕ-trees. (To emphasize the dependence ofRwe shall sometimes denote
this module byT (ϕ;R).)

Lemma 4.2.1.The following formula defines a pre-Lie comultiplicationρ in T (ϕ):

ρ(T, s) =
∑

e∈edg(T )

(T 1
e , s|T 1

e
)⊗ (T 2

e , s|T 2
e
) (4.2.1)

Proof. We must verifyEq. (2.2.2)for A = T (ϕ). Pick a generator (T, s) of T (ϕ). A di-
rect application of definitions shows that both (ρ ⊗ id)ρ(T, s) and (id⊗ ρ)ρ(T, s) are sums
of certain expressions numerated by pairse1, e2 ∈ edg(T ). Pick such a paire1, e2. The
complement of the (interiors of) these two edges inT consists of three disjoint subtrees
T0, T1, T2 ⊂ T , where the notation is chosen so thatek connects a vertex ofT0 with a ver-
tex of Tk for k = 1,2. Setak = (Tk, s|Tk ) ∈ T (ϕ), wherek = 0,1,2. We consider three
cases depending on whether the rootv of T lies in T0, T1, or T2. If v ∈ T0, then the con-
tributions of the paire1, e2 to (ρ ⊗ id)ρ(T, s) and (id⊗ ρ)ρ(T, s) are, respectively, 0 and
a1⊗ a2⊗ a0+ a2⊗ a1⊗ a0. If v ∈ T1, then the contributions of the paire1, e2 to both
(ρ ⊗ id)ρ(T, s) and (id⊗ ρ)ρ(T, s) are equal toa2⊗ a0⊗ a1. The casev ∈ T2 is similar. In
all cases, the contribution ofe1, e2 to ((ρ ⊗ id)ρ − (id ⊗ ρ)ρ)(T, s) is invariant under the
permutation of the first two tensor factors. This gives (2.2.2). �

Antisymmetrizingρ, we obtain a Lie cobracketν in T (ϕ). Dualizingρ andν, we obtain
a pre-Lie multiplication� and a Lie bracket inT (ϕ)∗. Forgetting the tree-structure yields, a
pre-Lie (and Lie) coalgebra homomorphismT (ϕ) → T and the adjoint pre-Lie (and Lie)
algebra homomorphismT ∗ → T (ϕ)∗.

We can identifyT (ϕ) with the submodule ofT (ϕ)∗ consisting of functionals which are
non-zero only on a finite set of (homeomorphism classes of) rootedϕ-trees. If the setϕ(T )
is finite for anyT, thenT (ϕ) � T (ϕ) ⊂ T (ϕ) ⊂ T (ϕ)∗ so thatT (ϕ) acquires the structure
of a pre-Lie (and Lie) algebra. The forgetting homomorphismT ∗ → T (ϕ)∗ induces then
a pre-Lie (and Lie) algebra homomorphism fromT ⊂ T ∗ to T (ϕ) ⊂ T (ϕ)∗. It sends a
rooted treeT to

∑
s∈ϕ(T )(T, s).

Lemma 4.1.1follows from Lemma 4.2.1by taking asϕ the tree-structure assigning a
one-element set to every rooted tree.

5. From loops to trees

5.1. Homomorphismη

We construct a canonical pre-Lie coalgebra homomorphismη : L→ T (Φ) for an ap-
propriate rooted tree-structureΦ = Φ�. Here,� is an oriented surface,L = L(�), andΦ is
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a combination of a labeling and a planar structure. For a rooted treeT , the setΦ(T ) consists
of the triples (a labeling of the edges ofT by±1, a labeling of the vertices ofT by isotopy
classes of (non-pointed) loops on�, a planar structure onT). In other words, the module
T (Φ) is generated by planar rooted trees whose edges are labeled with a sign and whose
vertices are labeled with loops on�. Note that forgetting some (or all) of these additional
structures on rooted trees we obtain homomorphisms fromL to other Connes–Kreimer
pre-Lie coalgebras.

The definition ofη goes as follows. Pick a loopα : S1 → �. In Section 3, we associated
with every crossingp ∈ #α a segmentep ⊂ D2 with endpoints onS1 = ∂D2. We call a
subsetH of #α a cut of α if ep ∩ eq = ∅ for all distinctp, q ∈ H . For a cutH ⊂ #α, we
writeH ≺ α. With each suchH, we associate a rootedΦ-treeTH as follows. The segments
{ep}p∈H are mutually disjoint and split the unit diskD2 into several convex regions called
H-faces. The vertices ofTH are numerated by theH-faces. The edges ofTH are numerated
by elements ofH: the edge corresponding top ∈ H is denoted [p] and connects the vertices
of TH corresponding to twoH-faces adjacent toep. The graphTH is dual to the splitting of
D2 into theH-faces. This graph can be embedded inD2 as follows: each vertex is mapped
into a point inside the correspondingH-face; each edge is mapped onto the straight segment
connecting the images of its endpoints. It is clear from this description thatTH is a planar tree.

A vertex ofTH arising from anH-faceV is labeled with the loop on�obtained as follows:
moving along∂V we applyα while we are on∂V ∩ ∂D2. The key observation is that for all
p ∈ H , the mappingα : S1 → � maps the endpoints ofep to one and the same point, this
ensures that our procedure gives a loop on� (well defined up to reparametrization).

It remains to provideTH with a root and to assign signs to the edges ofTH . It is here
that we need to assume thatα is pointed with base point∗α ∈ α(S1). As the root ofTH ,
we take the vertex corresponding to the onlyH-face whose boundary contains the point
α−1(∗α). (We call thisH-face theroot face.) We label each edge [p] of TH with the signεp
defined inSection 3.2and setεH =

∏
p∈H εp. The resulting rootedΦ-tree is denotedTH

or TH (α, ∗α). Set

η(α) =
∑
H≺α

εH TH ∈ T (Φ) (5.1.1)

whereH runs over all cuts ofα. This extends byR-linearity to a homomorphismη : C→
T (Φ).

Theorem 5.1.1.η is a pre-Lie coalgebra homomorphism.

Proof. Pick a pointed loop (α : S1 → �, ∗α ∈ α(S1)). Then

(η⊗ η)(ρ(α)) = (η⊗ η)


∑
p∈#α

εp (αp1,p2, p)⊗ (αp2,p1, ∗α)




=
∑
p∈#α

∑
H1≺αp1,p2

∑
H2≺αp2,p1

εp εH1εH2TH1(αp1,p2, p)⊗ TH2(αp2,p1, ∗α)
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Also

ρη(α) = ρ

(∑
H≺α

εHTH

)
=
∑
H≺α

εH
∑

e∈edg(TH )

(TH )1e ⊗ (TH )2e

=
∑
H≺α

εH
∑
p∈H

(TH )1[p] ⊗ (TH )2[p] =
∑
p∈#α

∑
p∈H≺α

εH (TH )1[p] ⊗ (TH )2[p]

Therefore, it suffices to prove that for everyp ∈ #α,∑
H1≺αp1,p2

∑
H2≺αp2,p1

εpεH1εH2TH1(αp1,p2, p)⊗ TH2(αp2,p1, ∗α)

=
∑

p∈H≺α
εH (TH )1[p] ⊗ (TH )2[p]

This equality follows from the existence of the bijective correspondence (H1, H2) �→
{p} ∪H1 ∪H2 between pairs of cutsH1 ≺ αp1,p2, H2 ≺ αp2,p1 and cutsH ≺ α con-
taining p. Under this correspondence,εp εH1εH2 = εH , TH1(αp1,p2, p) = (TH )1[p] , and

TH2(αp2,p1, ∗α) = (TH )2[p] . �

5.2. Remarks

1. Each loop on� has a natural degree defined as the number of its self-intersections. This
can be used to define anR-linear homomorphismr : T (Φ;R) → T (Φ;R[u]), where
R[u] is the ring of 1-variable polynomials with coefficients inR. The homomorphismr
sends a rootedΦ-treeT tou|T |T , where|T | is the total degree ofTdefined as the sum over
the vertices ofT of the degrees of the corresponding loops. It is clear thatr is a pre-Lie
coalgebra homomorphism and so isrη : L→ T (Φ;R[u]). The latter homomorphism
allows us to separate the terms of different total degrees in the expression forη(α).
Quotientingrη by u, we obtain a pre-Lie coalgebra homomorphismrη(modu) : L→
T (Φ;R) which is given by the same formula asη but withH running over all cuts ofα
such that|TH | = 0. The equality|TH | = 0 means that the loops labeling the vertices of
TH have no self-crossings. This can be rephrased by saying thatH is amaximalcut of
#α not contained in a bigger cut.

2. In the definition ofη, the tree-structureΦ can be lifted to a stronger tree-structure
Φ̃. Observe that the edges of a planar tree incident to a vertexv are cyclically or-
dered. A pair of consecutive edges is called acorner at v. The tree-structurẽΦ is
formed byΦ and a choice of the corner at the root of the tree. For a subtreeT ′ ⊂ T ,
the restriction mapping̃Φ(T ) → Φ̃(T ′) is defined as follows. IfT ′ contains the root
v of T, then the distinguished corner ofT ′ at v is the one that contains the distin-
guished corner ofT at v. If T ′ does not contain the root ofT then we distinguish
the corner at the root ofT ′ containing the only edgee of T such thatT ′ = T 2

e .
The treesTH above all have a distinguished corner at the root, namely the cor-
ner containing the pointα−1(∗α). This lifts η to a pre-Lie coalgebra homomorphism
L→ T (Φ̃).
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3. The comultiplicationρ can be included in a family of pre-Lie comultiplicationsρa,b in
L parametrized by pairsa, b ∈ R. To defineρa,b, we simply replaceεp in the definition
of ρ by a+ bεp. ReplacingεH by

∏
p∈H (a+ bεp) in the definition ofη we obtain

a pre-Lie coalgebra homomorphism from (L, ρa,b) to T (Φ). For b = 0, the pre-Lie
coalgebra (L, ρa,b) is independent of the choice of orientation in� and can be defined
for non-orientable surfaces.

4. Cuts on loops were introduced in[8], Section 15, where they are used to relate loops on
� to knots in�× R.

5. Non-generic loops on� also lead to interesting and quite involved algebraic structures.
The author plans to study them elsewhere.

6. The work of Chas and Sullivan[1] suggests that the constructions of this paper generalize
to loops in manifolds of arbitrary dimension.

6. Weaker Lie coalgebras

In this section, we address the following question: can one define algebraic coproducts
as above under weaker assumptions on loops and trees? Specifically, we are interested in
non-pointed loops and oriented but non-rooted trees. The pre-Lie comultiplications defined
above do not survive in this setting. However, as we show here, the associated Lie cobrackets
do survive.

6.1. Loops re-examined

Forgetting the base points in the definition of isotopy of loops on an oriented surface�,
we obtain isotopy for (non-pointed) loops. Denote byL0 theR-module freely generated by
the set of isotopy classes of (non-pointed) loops on�. Forgetting the base point, yields a
projection pr :L→ L0.

Lemma 6.1.1.The Lie cobracketν in L induces a Lie cobracketν0 in L0.

Proof. We need to prove that when we forget the base points of loops on the right-hand
side of formula(3.2.2), the resulting expression does not depend on the choice of∗α. The
reason for this comes from the fact that for eachp ∈ #α, the two points of the setα−1(p)
have a natural orderp1, p2 independent of∗α. This order is defined by the condition that
the pair (the positive tangent direction ofα atp1, the positive tangent direction ofα atp2)
is positive with respect to the orientation of�. If α is pointed thenp1 = p1, p

2 = p2 in the
caseεp = 1 andp1 = p2, p

2 = p1 in the caseεp = −1. In all cases,

εp(αp1,p2 ⊗ αp2,p1 − αp2,p1 ⊗ αp1,p2) = αp1,p2 ⊗ αp2,p1 − αp2,p1 ⊗ αp1,p2

We can thus write down an explicit formula forν0:

ν0(α) =
∑
p∈#α

αp1,p2 ⊗ αp2,p1 − αp2,p1 ⊗ αp1,p2 � (6.1.1)
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6.2. Lie coalgebra of oriented trees

An oriented treeis a tree with oriented edges. Any subtree of an oriented tree is oriented
in the obvious way. We define a categoryOTreeswhose objects are oriented trees and whose
morphisms are orientation preserving embeddings (mapping vertices to vertices and edges
to edges). Anoriented tree-structureis a contravariant functorψ from the categoryOTrees
to the category of sets. Given an oriented tree-structureψ, anorientedψ-tree is a pair (an
oriented treeT, an elementt ∈ ψ(T )). Two such pairs (T, t), (T̃ , t̃) arehomeomorphicif
there is a homeomorphismj : T → T̃ such thatψ(j)(t̃) = t.

For any oriented tree-structureψ, we define anR-moduleT 0(ψ) freely generated by the
set of homeomorphism classes of orientedψ-trees. Removing an edgee from an oriented
treeT, we obtain two disjoint subtreesT 1

e , T
2
e ⊂ T numerated so thate is directed from a

vertex ofT 2
e to a vertex ofT 1

e .

Lemma 6.2.1.For any oriented tree-structureψ, the following formula defines a Lie co-
bracket inT 0(ψ):

ν0(T, t) =
∑

e∈edg(T )

(T 1
e , t|T 1

e
)⊗ (T 2

e , t|T 2
e
)− (T 2

e , t|T 2
e
)⊗ (T 1

e , t|T 1
e
)

This is proven along the same lines asLemma 4.2.1; the difference is that in-
stead of various positions of the root one has to consider four possible orientations
on e1, e2. (The identity used in the proof ofLemma 2.2.1and a similar identity with
P1,2 replaced byP2,3 may help to shorten the computations). Warning: the homomor-
phismT 0(ψ) → T 0(ψ)⊗2 defined by (T, t) �→∑

e(T
1
e , t|T 1

e
)⊗ (T 2

e , t|T 2
e
) is not a pre-Lie

cobracket.
If the setψ(T ) is finite for allT, then the Lie cobracketν0 induces a Lie bracket inT 0(ψ)

using the standard embeddingT 0(ψ) ↪→ T 0(ψ)∗.
Every rooted tree admits a canonical orientation uniquely defined by the condition that

all edges adjacent to the root are outgoing and all other vertices are adjacent to exactly one
incoming edge. This defines a covariant functorh : RTrees→ OTrees.

We shall be particularly interested in the oriented tree-structureΨ = Ψ� assigning to
an oriented treeT the set of pairs (a labeling of the vertices ofT by isotopy classes
of (non-pointed) loops on�, a planar structure onT). Let Φ = Φ� be the rooted tree-
structure defined inSection 5.1. For a rooted treeT and s ∈ Φ(T ), let signs(T ) be the
product of the signs labeling the edges ofT. Let hs(T ) be the oriented tree obtained
from h(T ) by inverting orientation on all edges labeled with−1. TheΦ-structures in-
duces aΨ -structures′ on hs(T ) by keeping the labels of the vertices and the embedding
intoR2.

We define an R-linear homomorphism prT : T (Φ) → T 0(Ψ ) by prT (T, s) =
signs(T )(hs(T ), s′).

Lemma 6.2.2. The homomorphismprT : T (Φ) → T 0(Ψ ) is a Lie coalgebra homomor-
phism.

The proof is an exercise on the definitions.
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6.3. Homomorphismη0

We define a Lie coalgebra homomorphismη0 : L0 → T 0(Ψ ) (a version ofη for non-
pointed loops). For a loopα : S1 → �, set

η0(α) =
∑
H≺α

TH ∈ T 0(Ψ )

whereTH is the planar (non-rooted) tree determined byH. The labels of the vertices of
TH are as inSection 5.1. The edges ofTH are oriented as follows. For a crossingp ∈ #α,
we orient the segmentep ⊂ D2 from p1 to p2 (in the notation introduced in the proof of
Lemma 6.1.1) and orient the edge [p] ⊂ TH ⊂ D2 so that the pair ([p], ep) determines the
counterclockwise orientation ofD2. (By the definition of [p], it intersectsep transversally
in one point). The next lemma follows directly from the definitions.

Lemma 6.3.1.The following diagram is commutative:

C
pr→ C0

η ↓ ↓ η0

T (Φ)
pr→ T 0(Ψ ).

Theorem 6.3.2.η0 is a Lie coalgebra homomorphism.

Proof. By the results aboveη and prT are Lie coalgebra homomorphisms. Hence, so is
η0 ◦ pr = prT ◦ η : L→ T 0(Ψ ). Since pr :L→ L0 is a surjection,η0 is a Lie coalgebra
homomorphism. �

Remark 5.2.1applies in this setting with obvious changes.

6.4. Related pre-Lie and Lie coalgebras

The constructions above can be adapted to so-called virtual strings, see[10]. An open
(resp.closed) virtual string of rank nis a subset of ]0,1[ (resp. ofS1) consisting of 2n
distinct points partitioned inton ordered pairs. These pairs are calledarrows. The set of
arrows of a virtual stringa is denoted arr(a). Two open (resp. closed) virtual stringsa, b are
homeomorphicif there is an orientation preserving self-homeomorphism of [0,1] (resp. of
S1) transforminga into b.

Pick an arroweof an open virtual stringa with endpointsp1, p2 ∈]0,1[ numerated so
thatp1 < p2. Setεe = 1 if e is directed fromp1 to p2 andεe = −1 otherwise. Denote by
a1
e (resp.a2

e) the virtual string obtained froma by removingeand all other arrows with at
least one endpoint on ]0,1[−[p1, p2] (resp. on [p1, p2]). The formula

ρ(a) =
∑

e∈arr(a)

εea
1
e ⊗ a2

e
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defines a pre-Lie comultiplication in theR-module S freely generated by the set of
homeomorphism classes of open virtual strings. This comultiplication is connected with
obvious multiplication inS given by concatenation of open strings. Namely,ρ(ab) =
ρ(a)(1⊗ b)+ (1⊗ a)ρ(b) for a, b ∈ S.

Closed virtual strings can be obtained from the open ones by gluing 0 and 1. This gives
a projection fromS to the similar moduleS0 generated by homeomorphism classes of
closed virtual strings. The pre-Lie comultiplication does not survive this operation but the
associated Lie cobracket survives. The homomorphismsη andη0 have their analogues: a
pre-Lie coalgebra homomorphismS→ T (Φ′) and a Lie coalgebra homomorphismS0 →
T 0(Ψ ′), whereΦ′ is a rooted tree-structure combining a labeling of edges by±1 with a
planar structure andΨ ′ is a planar structure.

Finally, observe that there is a projection from the coalgebras of loops on an oriented
surface� into the coalgebras of virtual strings. The key observation is that every pointed
loopα on� determines an open virtual stringa(α) formed by the ordered pairs (p1, p2) with
p ∈ #α. Here, we identifyS1− α−1(∗α) with ]0,1[ via an orientation preserving homeo-
morphism. The formulaα �→ a(α) defines a pre-Lie coalgebra homomorphismL(�) → S.
It is in general neither surjective nor injective. In particular, pointed loops on� related
by the action of the mapping class group have the same images inS. The homomorphism
L(�) → S induces a Lie coalgebra homomorphismL0(�) → S0. We also have the obvious
forgetting homomorphismsT (Φ) → T (Φ′) andT 0(Ψ ) → T 0(Ψ ′) making all the natural
diagrams arising here commutative.

7. Lie bialgebra of loops

We relate the Lie coalgebraL0 = L0(�) to the Lie bialgebra of loops on� introduced
in [7,8].

7.1. Lie coalgebraZ = Z(�)

Loopsα, β on� arefreely homotopicif there is a mappingf : S1× [0,1] → � such that
α(a) = f (a,0) andβ(a) = f (a,1) for all a ∈ S1. Free homotopy is an equivalence relation
on the set of loops. The corresponding set of equivalence classes is denotedπ̂ = π̂(�).
This set has a distinguished elementα0 represented by an embeddingS1 ↪→ � onto the
boundary of a small disk in�. For connected�, the setπ̂ can be identified with the set of
conjugacy classes in the fundamental groupπ of �.

LetZbe theR-module freely generated by the setπ̂. Since isotopic loops are homotopic,
assigning to an isotopy class of loops the underlying homotopy class we obtain anR-linear
homomorphismP : L0 → Z. The Lie cobracketν0 in L0 cannot directly induce a Lie
cobracket inZbecause of the following obstruction. Consider a loopα : S1 → � and insert
a smallϕ-like cirl on the right ofα. This gives a new loop,α′, homotopic toα. It is clear
from formula(6.1.1)that

(P ⊗ P)ν0(α′) = (P ⊗ P)ν(α)+ α0⊗ P(α)− P(α)⊗ α0 �= (P ⊗ P)ν0(α)
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This obstruction can be circumvent as follows. Letg : Z→ Zbe theR-linear endomorphism
defined byg(a) = a for all a ∈ π̂ − {α0} andg(α0) = 0.

Lemma 7.1.1. ([7,8]). The following formula defines a Lie cobracketνZ : Z→ Z⊗2:

νZ(α) = (g⊗ g)


∑
p∈#α

αp1,p2 ⊗ αp2,p1 − αp2,p1 ⊗ αp1,p2


 (7.1)

Formula(6.1.1)implies thatgP : L0 → Z is a Lie coalgebra homomorphism. The map
L0 → T 0(Ψ ) does not survive the factorization of loops by homotopy: the linear combi-
nation of trees associated with a loop may change drastically under homotopy. However,
there appears another fundamental structure described next.

7.2. Goldman’s Lie bracket in Z

Goldman[5] defined a Lie bracket [,] inZ as follows. (A related Lie algebra is im-
plicit in the earlier paper of Wolpert[12].) Let α, β be two loops on�. Applying a small
isotopy toα we can assume thatα meetsβ transversally at a finite number of points dis-
tinct from self-intersections ofα, β. Denote the (finite) setα(S1) ∩ β(S1) by α#β. Each
point p ∈ α#β is a double transversal intersection ofα andβ. Let (α · β)p = ±1 denote
the intersection index ofα andβ at p. Smoothing the setα(S1) ∪ β(S1) at p we obtain a
loop on� denoted (αβ)p. This smoothing replaces theX-like crossing atp by two dis-
joint arcs↑↑ so that arriving to a neighborhood ofp alongα (resp.β) one leaves alongβ
(resp.α). Set

[α, β] =
∑
p∈α#β

(α · β)p(αβ)p

Extending by bilinearity we obtain a bracket [,] inZ.

Theorem 7.2.1.[5] [,] is a well defined Lie bracket in Z.

To explain the connection between the Lie cobracketνZ and Goldman’s Lie bracket,
we recall the notion of a Lie bialgebra due to V. Drinfeld. ALie bialgebraover R is
anR-moduleA endowed with a Lie bracket [,] and a Lie cobracketν : A→ A⊗2 such
that ν([x, y]) = xν(y)− yν(x) for any x, y ∈ A. Here,A acts onA⊗ A by x(y ⊗ z) =
[x, y] ⊗ z+ y ⊗ [x, z].

Theorem 7.2.2.([7,8]). The triple(Z, [, ], νZ) is a Lie bialgebra.

This bialgebra has a topological quantization (in fact, a biquantization) in terms of a Hopf
algebra of skein classes of oriented links in�×R. It is curious to note that this algebra
acts on the spaces of conformal blocks associated with� by appropriate two-dimensional
modular functors.
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8. Hopf algebras of trees and loops

8.1. Symmetric algebras

Given anR-moduleA, one has its symmetric algebra

S(A) = ⊕n≥0S
n(A)

whereS0(A) = R, S1(A) = A, andSn(A) is the nth symmetric tensor power ofA for
n ≥ 2. The algebraS(A) is commutative and associative and has a unit 1∈ R = S0(A). The
projectionS(A) → S0(A) = R along⊕n≥1S

n(A) is called theaugmentation.
If A is a free module with basis{xi}i, thenS(A) can be identified with the polynomial

algebraR[{xi}i].

8.2. Connes–Kreimer Hopf algebras

Consider the symmetric algebraS(T ) whose elements are polynomials on rooted trees
with coefficients inR. (The unit 1∈ S0(T ) can be thought of as an empty tree.) Connes and
Kreimer[2] defined a non-cocommutative comultiplication inS(T ) which makes it into a
bialgebra. We recall their definition extending it (in a straightforward way) to the setting of
rooted trees with structure. Fix a rooted tree-structureϕ. A simple cutof a rooted treeT is a
setc ⊂ edg(T ) such that any embedded path leading from the root ofT to a vertex ofTmeets
at most one element ofc. Removing fromTall (open) edges belonging to a simple cutcwe
obtain a set of disjoint subtrees ofT. One of them denotedT0 contains the root ofT. The other
subtrees{Te}e∈c are numerated by the elements ofcso that eache ∈ c connects a vertex ofT0
to a vertex ofTe. Recall that all subtrees ofTare rooted in a canonical way. Fors ∈ ϕ(T ), set

lc(T, s) =
∏
e∈c

(Te, s|Te ) ∈ S(T (ϕ)), rc(T, s) = (T0, s|T0) ∈ S0(T (ϕ))

Set

∇(T, s) = (T, s)⊗ 1+
∑
c

lc(T, s)⊗ rc(T, s) (8.2.1)

wherec runs over all simple cuts ofT. Note that the termlc ⊗ rc corresponding toc = ∅ is
equal to 1⊗ (T, s). Formula8.2.1defines∇ on the generators of the algebraS = S(T (ϕ));
it extends uniquely to an algebra homomorphism∇ : S → S ⊗ S. It follows from the
definitions that the augmentationS → R is a counit of∇. Connes and Kremer proved that
∇ is coassociative. They also explain that the resulting bialgebraS(T (ϕ)) has an antipode
and is thus a Hopf algebra.

8.3. Hopf algebra of pointed loops

Consider the symmetric algebraS = S(L) whereL = L(�) is theR-module freely gen-
erated by isotopy classes of pointed loops on an oriented surface�. Elements ofS are
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polynomials on isotopy classes of pointed loops on� with coefficients inR. We define a
comultiplication∆ inSas follows. Pick a pointed loopα on�. Recall the segments{ep}p∈#α
in the unit diskD and theH-faces ofD determined by a cutH ≺ α, cf. Sections 3.1 and 5.1.
Let v(H) denote the rootH-face, i.e., the onlyH-face containingα−1(∗α) ∈ ∂D. Forp ∈ H

denote byv(H,p) the uniqueH-face adjacent toep and such thatv(H,p) andv(H) lie on
different sides of the line containingep. The formulap �→ v(H,p) establishes a bijection
betweenH and the set ofH-faces distinct fromv(H). For anyH-facev denote byαv the
associated pointed loop on�. Set

lH (α) =
∏
p∈H

αv(H,p) ∈ S, rH (α) = αv(H) ∈ L ⊂ S

A cutH of α is simpleif all segments{ep}p∈H are adjacent tov(H). To indicate thatH is a
simple cut ofα we writeH � α. Set

∆(α) = α⊗ 1+
∑
H�α

εH lH (α)⊗ rH (α) ∈ S ⊗ S

whereεH =
∏

p∈H εp. Note that the termεH lH (α)⊗ rH (α) corresponding toH = ∅ is
equal to 1⊗ α.

This defines∆ on the generators ofS; it extends uniquely to an algebra homomorphism
∆ : S → S ⊗ S.

Lemma 8.3.1.∆ is coassociative.

Proof. It suffices to prove that (id⊗∆)∆(α) = (∆⊗ id)∆(α) for any pointed loopα on
�. Set

A = (id ⊗∆)∆(α)−∆(α)⊗ 1, B = (∆⊗ id)∆(α)−∆(α)⊗ 1.

We shall prove thatA = B. To this end, we define another expressionC and prove that
A = C = B.

For simple cutsG� α,G′ � α, we writeG′ ≤ G if v(Gα) ⊂ v(G). Then,G ∪G′ ⊂ #α
is a cut ofα. Its faces are theG-faces{v(G ∪G′, p) = v(G,p)}p∈G and the faces obtained
by splittingv(G) along the segments{eq}q∈G′−G, specifically,{v(G ∪G′, q)}q∈G′−G and
v(G′). (Note thatG′ −G = G′ − (G ∩G′).) Set

C =
∑

G,G′�α s.t. G′≤G
εG∪G′

∏
p∈G

αv(G,p) ⊗
∏

q∈G′−G
αv(G∪G′,q) ⊗ αv(G′) ∈ S⊗3

We claim thatA = C. If follows from the definition of∆ that

A =
∑
H�α

εH
∑

H ′�rH (α)

εH ′ lH (α)⊗ lH ′ (rH (α))⊗ rH ′ (rH (α))
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The formula (G,G′) �→ (H = G,H ′ = G′ −G) defines a bijective correspondence be-
tween pairs (G� α,G′ � α) such thatG′ ≤ G and pairs (H � α,H ′ � rH (α)). The
corresponding terms ofA andC are equal. The equality of signs follows from the formula
εG∪G′ = εG εG′−G = εHεH ′ . Therefore,A = C.

We claim thatB = C. If follows from the definition of∆ that

B =
∑
H�α

εH
∏
p∈H


αv(H,p) ⊗ 1+

∑
Hp�αv(H,p)

εHplHp (αv(H,p))⊗ rHp (αv(H,p))


⊗rH (α)

=
∑
H�α

εH
∑
I⊂H

∑
{Hp�αv(H,p)}p∈H−I

ε∪pHp


∏
q∈I

αv(H,q)

∏
p∈H−I

lHp (αv(H,p))




⊗
∏

p∈H−I
rHp (αv(H,p))⊗ rH (α)

With each tuple (H � α, I ⊂ H, {Hp � αv(H,p)}q∈H−I ), we associate the pair (G = I ∪
∪p∈H−IHp,G

′ = H). This defines a bijective correspondence between such tuples and the
pairs (G� α,G′ � α) such thatG′ ≤ G. The corresponding terms ofB andC are equal.
The equality of signs follows from the formulaG ∪G′ = H ∪ ∪p∈H−IHp and the fact that
the sets{Hp}p∈H−I andH are pairwise disjoint. Therefore,B = C. �

It is clear that the augmentationε : S → R is a counit of∆. The bialgebra (S,∆) has an
antipodes. This is an algebra endomorphism ofSdetermined on a generatorα by induction
on |α| = card(#α): if |α| = 0, thens(α) = −α, if |α| ≥ 1, then

s(α) = −α−
∑

H�α,H �=∅
εH lH (α) s(rH (α)) ∈ S

where we use that|rH (α)| < |α|. These formulas guarantee thatm(idS ⊗ s)∆(α) = ε(α),
wheremis multiplication inS. In other words,sis a left inverse of idS with respect to the con-
volution product� in HomR(S, S) defined byf � g = m(f ⊗ g)∆ for f, g ∈ HomR(S, S).
Similar inductive formulas show that idS has a right inverses′ ∈ HomR(S, S) and then
s = s � (idS � s′) = (s � idS) � s′ = s′. Therefore,s is an antipode forS.

8.4. Homomorphismη

TheR-linear homomorphismη : L→ T (Φ) defined inSection 5.1extends by multi-
plicativity to an algebra homomorphismS(L) → S(T (Φ)) also denotedη.

Theorem 8.4.1.η is a Hopf algebra homomorphism.

Proof. We need to show that∇(η(α)) = (η⊗ η)(∆(α)) for any pointed loopα : S1 → �.
Set a = ∇(η(α))− η(α)⊗ 1 andb = (η⊗ η)(∆(α)− α⊗ 1). It is enough to check that
a = b.

Consider a cutH ⊂ #α of α and a subsetG ⊂ H such thatG is a simple cut ofα. The
cut G determines a simple cutc(G,H) of the treeTH = TH (α) consisting of the edges
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{〈p〉}p∈G. (This establishes a bijection between simple cuts ofTH and subsets ofH which
are simple cuts ofα.) Set

〈G,H〉 = lc(G,H)(TH )⊗ rc(G,H)(TH ) ∈ S(T (Φ))⊗ T (Φ).

By abuse of notation we do not specify theΦ-structure on the trees on the right-hand side;
it is induced by the one onTH . It is easy to deduce from the definitions that

b =
∑
G�α

εG
∑

G⊂H≺α
εH−G 〈G,H〉 =

∑
H≺α

εH
∑

G⊂H s.t.G�α

〈G,H〉 = a.

Thus,η is a bialgebra homomorphism. Finally, any bialgebra homomorphism of Hopf
algebras is a Hopf algebra homomorphism, see[6], Lemma 4.0.4. �

8.5. Non-commutative Hopf algebra of loops

Given anR-moduleA, one has its tensor algebraT (A) = ⊕n≥0A
⊗n, whereA⊗0 = R,

A⊗1 = A, andA⊗n with n ≥ 2 is the tensor product overRof n copies ofA. The product
in T (A) is defined by

(a1⊗ · · · ⊗ an)(an+1⊗ · · · ⊗ an+m) = a1⊗ · · · ⊗ an+m

for a1, . . . , an+m ∈ A. In the sequel instead ofa1⊗ · · · ⊗ an, we write
∏

i ai. The algebra
T (A) is associative and has a unit 1∈ R = A⊗0. The identity mapA→ A extends to a
surjective algebra homomorphismT (A) → S(A). If A is a free module with basis{xi}i,
then T (A) is the algebra of non-commutative polynomials in the variables{xi}i with
coefficients inR.

Consider the tensor algebraT = T (L), whereL = L(�). Observe that any simple cut
H ⊂ #α of a pointed loopα is totally ordered in a canonical way. Namely starting at the base
point∗α and moving along the loop we meet first a certain point ofH twice, then another point
ofH twice, etc. The resulting order onHallows us to set̃lH (α) =∏p∈H αv(H,p) ∈ L⊗n ⊂ T .
The formula

∆̃(α) = α⊗ 1+
∑
H�α

εH l̃H (α)⊗ rH (α)

defines a mapL→ T ⊗ T . It extends to an algebra homomorphism∆̃ : T → T ⊗ T . The
same argument as in the proof ofLemma 8.3shows that̃∆ is coassociative. In this argument
in the expressions forC,B, one should use the orders inG′ −G andH − I (needed in the
second tensor factor) induced by the orders inG′ andH respectively. In the expression forB,
one should replace

∏
q∈I αv(H,q)

∏
p∈H−I lHp (αv(H,p)) with

∏
p∈H ap, whereap = αv(H,p)

for p ∈ I andap = lHp (αv(H,p)) for p ∈ H − I.
The projectionT → R along⊕n≥1L

⊗n is a counit ofT. The existence of an antipode
in T is straightforward. It is clear that the natural projectionT → S(L) is a Hopf algebra
homomorphism.
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A non-commutative analogue ofη is a Hopf algebra homomorphism ˜η fromT to Foissy’s
[3] non-commutative Hopf algebraHP,R(Φ) generated by rootedΦ-trees. Note that Foissy
considers planar rooted trees with labeled vertices but nothing prevents from extending his
definitions to the case where the edges are also labeled. (Alternatively, one may observe
that the edges of a rooted tree are numerated by the vertices distinct from the root so that
a labeling of the edges can be interpreted as a labeling of the vertices.) The value of ˜η on
the generators ofT = T (L) is given by formula(5.1.1). We have a commutative diagram
of Hopf algebra homomorphisms

T (L)
η̃→ HP,R(Φ)

↓ ↓
S(L)

η→ S(T (Φ))

where the vertical arrows are the natural projections.

8.6. Remark

As in Remark 5.2.3, for any a, b ∈ R, we can replace everywhere (and in particular
in the definition ofεH ) the signεp with a+ bεp. This yields a two-parameter family
of coassociative comultiplications∆a,b in S(L) (resp.∆̃a,b in T (L)) and Hopf algebra
homomorphisms from the resulting Hopf algebras toS(T (Φ)) (resp. toHP,R(Φ)).

9. Further algebras

In analogy with tree-structures, we can introduce axiomatically certain “structures” on
loops suitable for a generalization of the comultiplicationsρ,∆ defined above. Instead of
doing this here, we focus on two specific additional structures on loops and briefly discuss
the associated algebras.

9.1. Algebras of Wilson loops

By a regionof a (generic) loopα : S1 → � on an oriented surface�, we mean a con-
nected component of�− α(S1). A Wilson loopis a loop on� whose regions are endowed
with numbers (say, real or complex). The number associated with a region is called itsarea.
A Wilson loop ispointedif its underlying geometric loop is pointed. Isotopy of (pointed)
Wilson loops is defined in the obvious way, the areas being preserved under ambient iso-
topies and reparametrizations.

For a Wilson loopα and a crossingp ∈ #α, both loopsαp1,p2 andαp2,p1 appearing in
Section 3.2become Wilson loops as follows. The area of a regionX of αp1,p2 (resp. of
αp2,p1) is set to be the sum of the areas of regions ofα contained inX.

LetW be theR-module freely generated by the set of isotopy classes of pointed Wilson
loops. The definition of the pre-Lie comultiplication inSection 3.2applies to Wilson loops
word for word and gives a pre-Lie comultiplication inW. In analogy withSection 6, the
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associated Lie cobracket inW induces a Lie cobracket inW0, theR-module freely generated
by the set of isotopy classes of non-pointed Wilson loops. Forgetting the areas we obtain a
pre-Lie coalgebra homomorphismW→ L and a Lie coalgebra homomorphismW0 → L0.
Similarly, the definition of∆ in Section 8applies to Wilson loops and gives Hopf algebra
structures inS(W) andT (W) and a commutative diagram

T (W) → T (L)
↓ ↓

S(W) → S(L)

of surjective Hopf algebra homomorphisms. The comultiplications inW, S(W), T (W) can
be included in a 2-parameter family of comultiplicationsρa,b,∆a,b, ∆̃a,b as in Remarks
5.2.3 and 8.6.

9.2. Algebras of knot diagrams

A knot diagramon an oriented surface� is a (generic) loopα : S1 → � such that
each crossingp ∈ #α is endowed with a signµp = ±1. The equivalence with the more
standard language of over/undercrossings is established as follows. Recall that two branches
of α passing throughp ∈ #α have an order determined by the orientation of� (cf. the
proof of Lemma 6.1.1). Then, the first branch goes over (resp. under) the second branch
if µp = 1 (resp. ifµp = −1). Note that by the definition of a loop, our knot diagrams are
oriented.

A knot diagram ispointedif its underlying geometric loop is pointed. Isotopy of (pointed)
knot diagrams is defined in the obvious way, the signsµ being preserved under ambient
isotopies and reparametrizations.

Let D be theR-module freely generated by the set of isotopy classes of pointed knot
diagrams. Pick four elementsa, b, c, d ∈ R. For a pointed knot diagramα and a crossing
p ∈ #α, both loopsαp1,p2 andαp2,p1 appearing inSection 3.2become knot diagrams:
their self-crossings are also self-crossings ofα and we attribute to them the same signsµ.
Set

ρa,b,c,d(α, ∗α) =
∑
p∈#α

(a+ bεp + cµp + dεpµp) (αp1,p2, p)⊗ (αp2,p1, ∗α).

This defines a pre-Lie comultiplicationρa,b,c,d : D→ D⊗D. Note that multiplying all
signsµp by−1 we obtain an isomorphism (D, ρa,b,c,d) ≈ (D, ρa,b,−c,−d). Forc = d = 0,
this defines an involution in (D, ρa,b,0,0).

Similarly, the definition of∆ in Section 8can be applied to pointed knot diagrams
and gives Hopf algebra comultiplications∆a,b,c,d in S(D) and ∆̃a,b,c,d in T (D). (It is
understood that we replace everywhereεp with a+ bεp + cµp + dεpµp.) The definitions
of η, η̃ also apply and yield a pre-Lie coalgebra homomorphism (D, ρa,b,c,d) → T (Φ) and
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a commutative diagram of Hopf algebra homomorphisms

(T (D), ∆̃a,b,c,d) → HP,R(Φ)
↓ ↓

(S(D),∆a,b,c,d) → S(T (Φ)).

For a = c = 0, the Lie cobracket inD associated withρa,b,c,d induces a Lie cobracket
in D0, theR-module freely generated by the set of isotopy classes of non-pointed knot dia-
grams. If additionallyd = 0, b = 1, then we have a forgetting Lie coalgebra homomorphism
D0 → L0.

9.3. Homomorphisms

The pre-Lie algebrasL,W,D are related by three pre-Lie algebra homomorphisms:

(L, ρa,b) → (D, ρa,b,0,0) → (W, ρa,b) → (L, ρa,b). (9.3.1)

We describe them on the generators. The leftmost homomorphism is obtained by attributing
µ = +1 to all crossings of a pointed loop. The rightmost homomorphism is obtained by
forgetting the areas. The middle homomorphismD→W comes from the theory of shadow
knots[9]. It transforms a pointed knot diagram (α,µ) into a pointed Wilson loop as follows.
A crossingp ∈ #α is adjacent to four (possibly coinciding) regionsR1, . . . , R4 of α which
we numerate so thatR1 lies between the outgoing branches ofα atpandR3 lies between the
incoming branches ofα atpwhileR2,R4 are the two remaining regions. Then,pcontributes
(−1)k+1µp/2 to the area ofRk for k = 1, . . . ,4. The area of a region ofα is defined to be
the sum of the contributions of the crossings ofα adjacent to this region. The makesα into
a pointed Wilson loop.

It is clear that the composition of the three homomorphisms in (9.3.1) is the identity
map. These homomorphisms induce Hopf algebra homomorphisms

(S(L),∆a,b) → (S(D),∆a,b,0,0) → (S(W),∆a,b) → (S(L),∆a,b)

and similar Hopf algebra homomorphisms withS,∆ replaced byT, ∆̃.
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