Available online at www.sciencedirect.com

JOURNAL OF
SCIENCE DIRECT®
@ GEOMETRY anp
i < PHYSICS
ELSEVIER Journal of Geometry and Physics 53 (2005) 461-482

www.elsevier.com/locate/jgp

Loops on surfaces, Feynman diagrams, and trees

Vladimir Turaev

IRMA, Universi€ Louis Pasteur, C.N.R.S., 7 rue RdDéscartes, F-67084 Strasbourg Cedex, France

Received 17 June 2004; accepted 20 July 2004
Available online 11 September 2004

Abstract
We relate the author’s Lie cobracket in the module additively generated by loops on a surface with

the Connes—Kreimer Lie bracket in the module additively generated by trees.
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1. Introduction

In 1989, the author introduced for any oriented surigca Lie cobracket in the module
Z = Z(X) generated by the homotopy classes of loopsosee[7,8]. The cobrackev
complements the Goldman Lie bracketdrmnd makeg into a Lie bialgebra in the sense
of Drinfeld. One of the main results {8] is an algebraic quantization of this Lie bialgebra
in terms of a Hopf algebra of knots i x R. The Goldman Lie bracket has a transparent
geometric nature: it is a reformulation of the Poisson bracket determined by the symplectic
structure on the Teichiatler space (and/or other similar moduli spaces). On the other hand,
the geometric nature of the cobrackeemained mysterious. We argue here that the reason
for the existence of this cobracket is that generic loop&aran be viewed as Feynman
diagrams (of a rather special type). More precisely, we relatethe pre-Lie algebras and
Hopf algebras of rooted trees introduced by Connes and Krdzhén their fundamental
work on the algebraic foundations of the perturbative quantum field theory. We introduce
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similar algebras generated by generic loopZand define their canonical projection to the
Connes—Kreimer algebraSections 2—deal with the Lie and pre-Lie (co)algebras arising

in this theory.Section 8is devoted to the associated Hopf algebras. In theSastion 9

we consider similar algebraic structures in the realms of Wilson loops and knot diagrams
on . Throughout the paper, we fix a commutative ring with iiThe symbolg denotes

the tensor product dR-modules oveR. The symbolx denotes a smooth oriented surface
(possibly with boundary).

2. Lie and pre-Lie coalgebras

We recall the algebraic language of pre-Lie and Lie coalgebras used systematically in
the paper.

2.1. Lie coalgebras

For anR-moduleL, denote by Permthe permutation ® y —~ y® xin L?2 =L QL
and byt; the permutationn ® y® z > zQ@xQ®yin L®3 =L ® L ® L. A Lie algebra
overRcan be defined as &imodulel. endowed with afiR-homomorphism (the Lie bracket)
6 : L®2? — L such thab o Permy = —6 and (the Jacobi identity)

0o (id, ®6)o(id;es + 17 + 72) = 0 € Homg(L®3, L)

Here, for a seBwe denote by igd the identity mappingg — S.
Dually, aLie coalgebraover R is anR-module A endowed with arR-homomorphism
(the Lie cobrackety : A — A®2 such that Permov = —v and

(id ys3 + 14 + 72) 0 (id4 ® V) 0 v = 0 € Homg(A, A®3) (2.1.1)

A Lie coalgebra 4, v) gives rise to thedual Lie algebraA* = Homg(A, R), where the
Lie bracket is the homomorphisa™ @ A* — A* adjoint tov. Fora, b € A*, the bracket
[a, b] € A* evaluates o € A by

[a. b](x) = > axP)p(:?) € R (2.1.2)

1

for any (finite) expansiom(x) = l.xl(l) ® xlgz) €EARA.

A Lie coalgebra homomorphisifs, v) — (A’, V') is an R-linear homomorphisny :
A — A’suchthat’ f = (f ® f)v. The adjoint mag™ : (A')* — A*isthenaLie algebra
homomorphism.

2.2. Pre-Lie algebras and coalgebras

Pre-Lie algebras were introduced by Gerstenhfeand Vinberg/11] independently.
A (left) pre-Lie algebra oveRis anR-moduleL endowed with afr-bilinear multiplication
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L x L — L, denotedk, such that for any, y,z € L,
(xxY)xz—xx(y*z)=(*x)xz—yx(xx2) (2.2.1)

There is a similar notion of right pre-Lie algebras. We will consider only left pre-Lie
algebras and refer to them simply as pre-Lie algebras. EqalRyl)implies that k, y] =
xxy— yxxisaLie bracketirl.

A pre-Lie algebra homomorphis(d, x) — (L', «') is anR-linear homomorphisny :
L — L’ suchthatf(x x y) = f(x)*" f(y)forallx, ye L.

Dualizing formula(2.1.1) we obtain a notion of a pre-Lie coalgebra. A (Igfte-Lie
coalgebrais anR-module A endowed with arR-linear homomorphismp: A - A® A
such that

(id 103 — P32 (0 ®ida)p — (ids ® p)p) = 0 € Homg(A, A%%) (2.2.2)

WherePfll’2 is the endomorphism of®3 permuting the first and second tensor factors. Given
a pre-Lie coalgebra4, p), the dual moduleA* = Homg(A, R) acquires a structure of a
pre-Lie algebra: fot, b € A*, the value oli x b € A* onx € A is given by the right-hand

side of formula(2.1.2)for any expansiom(x) = l.xl(l) ® xfz) € AQA.
Lemma 2.2.1. For any pre-Lie coalgebrdA, p), the homomorphism = p — Permyp :
A — A®?js a Lie cobracket

Proof. Itis obvious that Permo v = —v. Formula(2.1.1)follows from the identity
(id o5 + 4 + 73) 0 (ids ® v) 0 v = —(id 403 + Ta + 72) 0 (i ge3 — P}?)
o((p®ida)p — (ida ® p)p)
which holds forany Rlinear homomorphismp : A — A®2 andv = p — Permyp. O
A pre-Lie coalgebra homomorphis(d, p) — (A’, ¢’) is anR-linear homomorphism
f:A— A’suchthap’ f = (f ® f)p. The adjoint magf™ : (A')* — A*isthenapre-Lie
algebra homomorphism. The reader should always keep in mind that a pre-Lie coalgebra

homomorphisnfiis always a Lie coalgebra homomorphism of the associated Lie coalgebras
and its adjointf* is a Lie algebra homomorphism of the dual Lie algebras.

3. Pre-Lie coalgebra of loops
We define a pre-Lie coalgebra of loops on a smooth oriented suface
3.1. Loops and Feynman diagrams

A generic loopon ¥ is a smooth immersior : S* — ¥ — 3% having only double
transversal self-crossings. The set of the self-crossingsisfdenoted #; it is always
finite. We will consider only generic loops and refer to them simply as loops. The circle
St = {z € C| |z| = 1} is oriented counterclockwise, this makes all loops orientgubiAted
loop s a pair (a loopx on =, a points, € a(S1) — #a). The latter point is called thease
point of «.
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Two pointed loopsy, 8 on X can be obtained from each other gparametrization
if %, = xg and there is an orientation preserving homeomorphisns! — $* such that
B = af. Pointed loopsy, 8 on ¥ areambient isotopidf there is a continuous family of
homeomorphismgh; : ¥ — X}¢0,1) such thatig = idx, 8 = hie, andxg = hi(xs). We
say that two pointed loops on areisotopicif they can be obtained from each other by
ambient isotopy and/or reparametrization. For example, slightly pushiatpnga(st) —

#a we obtain a pointed loop isotopic ta,(x,). It is clear that isotopy of loops is an
equivalence relation. We shall usually identify loops with their isotopy classes.

We shall also consider loops which are only piecewise smooth. This should create no
problem since the non-smooth points (looking like corners of a broken line) will be finite in
number and distinct from crossing points. All such loops can be smoothed in the obvious
way.

Any loop « on T gives rise to a Feynman diagram. It is formed by the cisdland a
set of straight segmen(s,} ,c#. The endpoints ot are the two (distinct) points of the
seta~Y(p) c S*. The segmentse,}, lie in the unit diskD? = {z € C||z| < 1} and have
distinct endpoints but may meet insié#. We say thap, g € #« arelinkedif epNeg #9
andunlinkedif e, Ne, = . We shall see below that the segmefets}, can be naturally
oriented. The Feynman diagrarsil( {ep)p) is well known in knot theory as th&auss
diagramof «. In the physical language, the circ§é represents a fermion and the segments
{e,}p represent photons. Note that in this picture the photons do not interact with each
other.

3.2. Pre-Lie comultiplication for loops

Let £ = L(X) be theR-module freely generated by the set of isotopy classes of pointed
loops onX. Elements off are finite formal linear combinations of such isotopy classes
with coefficients inR. We define a pre-Lie comultiplication: £ — £%2.

We shall use the following notation: for two distinct pointsQ € S, denote byPQ
the oriented embedded arc$h which starts aP, goes in the positive (counterclockwise)
direction and terminates & Clearly,PQ U QP = STandPQ N QP = {P, Q}. Foraloop
o: ST — %, denote by p, ¢ the path inX obtained by restricting to the ardPQ.

It suffices to defing : £ — £%?onthe basis of. Consider the generator Sfpresented
by a pointed loopd : ST — =, %, € a(S1)). This loop traverses every poipte #u twice
in two different tangent directions. The setl(p) c S* consists of two pointp1, p» € St
numerated so that startingat!(x,) € S* and moving along? counterclockwise we first
meetp; and thenp;. The pathx,, ,, (resp.«,,,;,) is a closed loop o which starts off
atpin one of the two tangent directions mentioned above and follows alamgil the first
return top. The loope,,, ,, goes through:, and we takex, as its base point. As the base
point ofx,,, ,, We takep. Sete, = +1 if the pair (the positive tangent direction®ft p1,
the positive tangent direction of at p2) is positive with respect to the orientation Bf
In the opposite case, sgt = —1. Note thats,, and the numeratiop1, p, depend on the
choice ofx,. Finally, set

et %) = Y £p(@pypar P) ® (@pp. 1 *a) (3:2.1)
peta
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Lemma 3.2.1. The homomorphism : £ — £®? is a pre-Lie comultiplication

Proof. We verify formula(2.2.2)for A = L. Pick a pointed loop on X.

A direct application of the definitions shows that both id) po(«) and (iId® p)p(x) are
sums of certain expressions numerated by pairs of unlinked crossiggs #«. Pick such
a pairp, ¢. Starting atx—1(x,) and moving along! counterclockwise, we meet the points
P1, P2, q1, g2 in a certain order such that appears befor@, andg; appears beforg,.
Exchanging if necessary the lett@randg, we can assume that the first point we meehis
Then, the order in question is either iy, p2, g1, g2 or (i) p1, g1, g2, p2. The contribution
of p, g 10 p(a) iS€p(@py, pps P) ® (Apy, p1» *a) + €q(Ug1.q20 7) © (¢tgy.q1, *a). IN the case (i),
the contribution ofp, ¢ to (¢ ® id)p(«) is 0 and the contribution g, ¢ to (id ® p)p(«) is

€p€q(@py, pas P) ® (Agr,g2- @) @ (Xpy,g1%gs, p1s *a) + €pEq(Qgr,ga+ @) ® (@py, pys P)
® (g2, p1%pr.g1+ *a)

Here,ap, 4,04, p; @Ndag, p,ap, 4, are the loops obtained as products of the path)s;,
anday,, »,. Note that up to reparametrization, 4,0, p1 = Ugp, p1%p2.qs-

In the case (ii), the contributions of ¢ to (0 ® id)p(«) and (iId® p) () are both equal
to

€p€q(@g1,42: @) ® (@p1,91%5,p25 P) ® (py, p1s *a)

In both cases, the contribution of the pairg to ((0 ® id)p — (id ® p)p)() is invariant
under the permutation of the first and second tensor fagtbfsand is therefore annihilated
by id — P12, This proveg2.2.2) O
The pre-Lie comultiplicatiorp induces by antisymmetrization a Lie cobracken L.
On the basis of,
(@, *q) = Z €p((@py.p2r P) ® (@pp,prs %a) = (Upa.py» *a) © (Xp1. o P))  (3.2.2)
pEtta

The resulting Lie coalgebra and the dual Lie algebra were introduced,&j, cf.
Section 7

4. Connes—Kreimer pre-Lie coalgebras

We recall (in a convenient form) and generalize the definitions of Connes and Kreimer.
4.1. Pre-Lie coalgebra of rooted trees

Connes and Kreimdg] introduced a Lie algebra additively generated by rooted trees.
They observed that the Lie bracket in this Lie algebra is obtained by antisymmetrization of
a pre-Lie multiplication. We describe here the dual pre-Lie comultiplication.

By a tree we mean a finite tree. The set of edges of a ffeie denoted edd(). A
treeT with a distinguished vertex i®oted the distinguished vertex being theot of T. A
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homeomorphismof rooted trees is a homeomorphism of trees mapping vertices onto vertices,
edges onto edges, and the root into the root.JLée theR-module freely generated by the
set of homeomorphism classes of rooted trees.

Given an edgeof arooted tred, we obtain two other rooted trees as follows. Removing
(the interior of)efrom T, we obtain a grapi — e having the same vertices @sThis graph
consists of two disjoint treeE! and7? numerated so that the root 8fies on7;2. The root
of T provides a root fof’?. As the root off’2, we take the only vertex df! adjacent t@in T.

Lemma 4.1.1. The formulao(T) = >_,ceqgqr) T! ® T2 defines a pre-Lie comultiplication
o: T — T®2

We shall prove a more general statement in the next subsection.

Antisymmetrizingp, we obtain a Lie cobracket: 7 — 7 ®2. Dualizing p andv, we
obtain a pre-Lie multiplicatior and a Lie bracket irf * = Homg(7, R). Note that the
R-module7 is based and therefore can be identified with the submodule*afonsisting
of thoseR-linear functionals] — R which are non-zero only on a finite set of (homeo-
morphism classes of) rooted trees. More precisely, a rootedrtisédentified with the
functional7 — R taking value 1 orT and value 0 on all other elements of the basis. It is
easy to check thaf « 7 C 7 C T * so thatT acquires the structure of a pre-Lie algebra.
This structure and the associated Lie bracket were first defingg.in

4.2. Further pre-Lie coalgebras of trees

The pre-Lie coalgebr@ can be generalized using various additional structures on trees.
We describe a general setting for such generalizations.

By asubtreeof a treeT, we mean a tre@& ' c T formed by a set of vertices and edges
of T. If Tis rooted therf”’ has a unique vertex such that any path from the root ofto a
point of T’ passes through. We take thisv as the root off”. In this way, all subtrees of a
rooted tree become rooted.

We define a categorRTrees whose objects are rooted trees and whose morphisms are
embeddings. Armbeddingf rooted treeg : 7" — T is a homeomorphism df’ onto a
subtree of. (Such sends vertices, edges, and the rodt‘ainto vertices, edges, and the root
of the subtreg(7’) c T.) For example, homeomorphisms of rooted trees are embeddings.

A rooted tree-structures a contravariant functor from the categ@®¥rees to the category
of sets. Such a functa@s assigns to any rooted trea setp(T) and to any embedding:

T’ — T amapp(j) : (T) — ¢(T"). We must have(idr) = id,(r) ande(if’) = ¢(j)e()
for any embeddingg : 7”7 — T’/ andj : T’ — T. We give two examples of a rooted tree-
structure.

(8) (Alabeling): The sep(T) consists of all labelings of vertices and edge§ by elements
of certain setsSy and S1, respectively. The map(j) : ¢(T) — ¢(T") is the obvious
restriction of labelings.

(b) (A planar structure): The se(T) consists of all topological embeddings7T — R2
considered up to composition with an orientation preserving homeomoritfsm
R2. The mapp(j) : (T) — ¢(T") is defined byp(j)(i) = ij.
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Given arooted tree-structuge we define aootedgp-treeto be a pair (a rooted trelg an
elements € ¢(T)). Two such pairsXZ, s), (T, 5) are homeomorphic if there is a homeomor-
phismj : T — T such thaip(j)(5) = s. For a subtred” C T, sets|;» = ¢(j)(s) € o(T"),
wherej is the embedding” — T.

For any rooted tree-structuge we define ggeneralized) Connes—Kreimer pre-Lie coal-
gebra(T (¢), p). Here, T (p) is theR-module freely generated by the set of homeomorphism
classes of rooteg-trees. (To emphasize the dependencR ofe shall sometimes denote
this module byT (¢; R).)

Lemma 4.2.1. The following formula defines a pre-Lie comultiplicatiomn 7 (¢):

pT.s)= ) (T).slp) ® (T2, s12) (4.2.1)
ecedg()

Proof. We must verifyEq. (2.2.2)for A = T (¢). Pick a generatorT{ s) of T (¢). A di-
rect application of definitions shows that boghe id)o(T, s) and (id® p)o(T, s) are sums
of certain expressions numerated by paifses € edg(’). Pick such a paieq, e2. The
complement of the (interiors of) these two edged inonsists of three disjoint subtrees
To, T1, T» C T, where the notation is chosen so thatonnects a vertex dfy with a ver-
tex of Ty for k = 1, 2. Setay = (T, sl,) € T (¢), wherek =0, 1, 2. We consider three
cases depending on whether the roalf T lies in Ty, Ty, or T». If v € Ty, then the con-
tributions of the paire1, e2 to (o ® id)p(T; s) and (iId® p)p(T, s) are, respectively, 0 and
a1 ® a2 ® ap + a2 ® a1 ® ag. If v € T1, then the contributions of the padi, ¢> to both
(p ® id)p(T, s) and (Id® p)p(T, s) are equal ta; ® ap ® a1. The case € Ty is similar. In
all cases, the contribution ef, ez to ((0o ® id)p — (id ® p)p)(T, s) is invariant under the
permutation of the first two tensor factors. This give2(23. O

Antisymmetrizingp, we obtain a Lie cobracketin 7 (¢). Dualizingp andv, we obtain
a pre-Lie multiplicatiorx and a Lie bracket iff (¢)*. Forgetting the tree-structure yields, a
pre-Lie (and Lie) coalgebra homomorphiship) — 7 and the adjoint pre-Lie (and Lie)
algebra homomorphismi ™ — T (¢)*.

We can identifyT (p) with the submodule of (¢)* consisting of functionals which are
non-zero only on a finite set of (homeomorphism classes of) rgoteges. If the sep(T)
is finite for anyT, thenT (¢) x T (¢) C T (¢) C T (¢)* so thatT (¢) acquires the structure
of a pre-Lie (and Lie) algebra. The forgetting homomorphisth— 7 (¢)* induces then
a pre-Lie (and Lie) algebra homomorphism fromc 7 * to 7 (¢) C T (¢)*. It sends a
rooted tre€l to 3 (7. 5).

Lemma 4.1.Xollows from Lemma 4.2.1by taking asp the tree-structure assigning a
one-element set to every rooted tree.

5. From loops to trees

5.1. Homomorphism

We construct a canonical pre-Lie coalgebra homomorphjism — 7 (&) for an ap-
propriate rooted tree-structuge= @5x. Here,X is an oriented surfacé, = £(X), and® is
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a combination of a labeling and a planar structure. For a rooted{rbe setd(7T) consists

of the triples (a labeling of the edges by +1, a labeling of the vertices dfby isotopy
classes of (non-pointed) loops @h a planar structure om). In other words, the module

T(®) is generated by planar rooted trees whose edges are labeled with a sign and whose
vertices are labeled with loops @i Note that forgetting some (or all) of these additional
structures on rooted trees we obtain homomorphisms ffota other Connes—Kreimer
pre-Lie coalgebras.

The definition ofy goes as follows. Pick aloap: S* — X. In Section 3we associated
with every crossing € #o a segment, C D? with endpoints ons? = 9D?. We call a
subsetH of #a acutof « if e, Ne, = ¢ for all distinct p, g € H. For a cutd C #a, we
write H < «. With each sucli, we associate a rootabttree Ty as follows. The segments
{ep) pen are mutually disjoint and split the unit digh? into several convex regions called
H-faces. The vertices dfy are numerated by thd-faces. The edges @fy are numerated
by elements oH: the edge corresponding foe H is denoted p] and connects the vertices
of Ty corresponding to twél-faces adjacent te,. The grapH’y is dual to the splitting of
D? into theH-faces. This graph can be embeddedas follows: each vertex is mapped
into a point inside the correspondirigface; each edge is mapped onto the straight segment
connecting the images of its endpoints. Itis clear from this descriptioffithiata planar tree.

Avertex of Ty arising from arH-faceV is labeled with the loop o obtained as follows:
moving alongdV we applya while we are or9V N 9D?. The key observation is that for all
p € H, the mappingr : S* — ¥ maps the endpoints ef, to one and the same point, this
ensures that our procedure gives a loopbfwell defined up to reparametrization).

It remains to providg'y with a root and to assign signs to the edgedgf It is here
that we need to assume thais pointed with base point, € a(SY). As the root ofTy,
we take the vertex corresponding to the ohlyface whose boundary contains the point
o 1(x4). (We call thisH-face theroot face) We label each edge] of Ty with the signe,
defined inSection 3.2and sety =[], 5. The resulting roote-tree is denoted’y
or Ty(a, *4). Set

@)=Y enTu € T(P) (5.1.1)

H~<«a

whereH runs over all cuts of. This extends byr-linearity to a homomorphism : C —
T(P).

Theorem 5.1.1.7 is a pre-Lie coalgebra homomorphism

Proof. Pick a pointed loopd : ST — %, %, € a(S1)). Then

@ n)p@) =m0 [ D e @pr.ps P) ® (@py.p1- *a)
petta

= Z Z Z p €mEH THy (@1 pa. P) ® Thy(py, py s *a)

pEHa H1<a,,lﬁp2 H2<a,,2,,,1
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Also

on(e) = p (Z 8HTH) = Z €H Z (TH)L% ® (TH)E

H<«a H=<a ecedg(Tx)

- Z €H Z(TH)[lp] ® (TH)[2p] - Z Z SH(TH)[lP] ® (TH)[Zp]

H<a peH peHa peH=<o
Therefore, it suffices to prove that for evepye #a,

Z Z ep€H € Hy THy (U py. pys P) ® Thy (s, pr s *a)

Hi=<opy,py Ha<0tpy pq

= > eu(Tu)l, ® (Tu)f,
peH=<a

This equality follows from the existence of the bijective correspondetite K>) —
{p} U HL U H> between pairs of cut$ly < ap, p,, H2 < ap, p, and cutsH < o con-
taining p. Under this correspondence, e, em, = ¢u, Ty (0tpy, pps P) = (TH)[lp], and

THz(“Pz-,[’lv *q) = (TH)[ZI,]- O
5.2. Remarks

1. Eachloop orE has a natural degree defined as the number of its self-intersections. This
can be used to define d@ilinear homomorphisnt : 7(®; R) — T (®; R[u]), where
R[u] is the ring of 1-variable polynomials with coefficientsi The homomorphism
sends arooted-treeTtou!”!T, where|T| is the total degree Gfdefined as the sum over
the vertices off of the degrees of the corresponding loops. It is clearrtigt pre-Lie
coalgebra homomorphism and sorig: £ — T (®; R[u]). The latter homomorphism
allows us to separate the terms of different total degrees in the expressig(ujfor
Quotientingrn by u, we obtain a pre-Lie coalgebra homomorphispimodu) : £ —

T (@; R) which is given by the same formula asut with H running over all cuts o
such thaiTy| = 0. The equality 7y | = 0 means that the loops labeling the vertices of
Ty have no self-crossings. This can be rephrased by sayind#tiet maximalcut of

#a not contained in a bigger cut.

2. In the definition ofy, the tree-structur@ can be lifted to a stronger tree-structure
@. Observe that the edges of a planar tree incident to a vertae cyclically or-
dered. A pair of consecutive edges is calledaaner at v. The tree-structur@ is
formed by® and a choice of the corner at the root of the tree. For a sulftreeT,
the restriction mapping(T) — ®(T") is defined as follows. Iff" contains the root
v of T, then the distinguished corner @f at v is the one that contains the distin-
guished corner off at v. If T’ does not contain the root df then we distinguish
the corner at the root of”’ containing the only edge of T such that7’ = Tez.
The treesTy above all have a distinguished corner at the root, namely the cor-
ner containing the poink~1(x,). This lifts 5 to a pre-Lie coalgebra homomorphism
L — T(P).



470 V. Turaev / Journal of Geometry and Physics 53 (2005) 461482

3. The comultiplicatiorp can be included in a family of pre-Lie comultiplicatiop$? in
L parametrized by paiig b € R. To definep®?, we simply replace, in the definition
of p by a + bs),. Replacingsy by HpeH(a + be)) in the definition ofy we obtain
a pre-Lie coalgebra homomorphism from, (0**) to T (®). For b = 0, the pre-Lie
coalgebra(, p*?) is independent of the choice of orientationsirand can be defined
for non-orientable surfaces.

4. Cuts on loops were introduced[B], Section 15, where they are used to relate loops on
¥ to knots inT x R.

5. Non-generic loops oR also lead to interesting and quite involved algebraic structures.
The author plans to study them elsewhere.

6. The work of Chas and Sullivdfh] suggests that the constructions of this paper generalize
to loops in manifolds of arbitrary dimension.

6. Weaker Lie coalgebras

In this section, we address the following question: can one define algebraic coproducts
as above under weaker assumptions on loops and trees? Specifically, we are interested in
non-pointed loops and oriented but non-rooted trees. The pre-Lie comultiplications defined
above do not survive in this setting. However, as we show here, the associated Lie cobrackets
do survive.

6.1. Loops re-examined

Forgetting the base points in the definition of isotopy of loops on an oriented sface
we obtain isotopy for (non-pointed) loops. Denotedythe R-module freely generated by
the set of isotopy classes of (non-pointed) loopsSbrForgetting the base point, yields a
projection pr :.L — Lo.

Lemma 6.1.1. The Lie cobracket in £ induces a Lie cobrackeg in Lo.

Proof. We need to prove that when we forget the base points of loops on the right-hand
side of formula(3.2.2) the resulting expression does not depend on the choigg. dthe
reason for this comes from the fact that for each #«, the two points of the set~1(p)

have a natural ordes?, p? independent ok,. This order is defined by the condition that
the pair (the positive tangent direction®fit pl, the positive tangent direction afat p?)

is positive with respect to the orientationdf If « is pointed therp! = p1, p? = painthe
cases, =1 andp! = po, p?2 = p1inthe case, = —1. Inall cases,

Ep(Xp1.pa ® Upp.p1 = Upp.p1 ® Apy pp) = Upl p2 @ Ap2 p1— 02 p1 @ U1 2
We can thus write down an explicit formula fog:

vo(a) = Z Uyl 2 @Ap2 1 — 02 1 @A pt 2 (] (6.1.1)
petta



V. Turaev / Journal of Geometry and Physics 53 (2005) 461482 471
6.2. Lie coalgebra of oriented trees

An oriented treds a tree with oriented edges. Any subtree of an oriented tree is oriented
in the obvious way. We define a categ@?¥rees whose objects are oriented trees and whose
morphisms are orientation preserving embeddings (mapping vertices to vertices and edges
to edges). Aroriented tree-structures a contravariant functap from the category) Trees
to the category of sets. Given an oriented tree-struafyr@norientedy-treeis a pair (an
oriented tre€T, an element € /(7). Two such pairs¥, 7), (T, 7) arehomeomorphidf
there is a homeomorphisgi: T — T such thaty(j)(7) = 1.

For any oriented tree-structuge we define alR-module7 o(v) freely generated by the
set of homeomorphism classes of orienfettees. Removing an edggrom an oriented
tree T, we obtain two disjoint subtree®!, T2 C T numerated so thais directed from a
vertex of 72 to a vertex ofT’L.

Lemma 6.2.1. For any oriented tree-structure, the following formula defines a Lie co-
bracket in7T o(v):

(L) =Y (T} 1l52) ® (T2, tly2) — (T2, 1172) ® (T}, tl71)
ecedg()

This is proven along the same lines Bemma 4.2.1 the difference is that in-
stead of various positions of the root one has to consider four possible orientations
on e1, e2. (The identity used in the proof dfemma 2.2.1and a similar identity with
P12 replaced byP%2 may help to shorten the computations). Warning: the homomor-
phismTo(y) — To(¥)®? defined by (1) = 3 (T2, t]y1) ® (T2, t|;2) is nota pre-Lie
cobracket. ‘ ‘

If the sety/(T) is finite for all T, then the Lie cobracket induces a Lie bracket ifi o(v)
using the standard embeddifig(y) — 7T o(¥)*.

Every rooted tree admits a canonical orientation uniquely defined by the condition that
all edges adjacent to the root are outgoing and all other vertices are adjacent to exactly one
incoming edge. This defines a covariant funétorRTrees — OTrees.

We shall be particularly interested in the oriented tree-structute ¥, assigning to
an oriented treel’ the set of pairs (a labeling of the vertices Bfby isotopy classes
of (non-pointed) loops ork, a planar structure o). Let @ = @y be the rooted tree-
structure defined irSection 5.1 For a rooted tred ands € &(T), let sign(7) be the
product of the signs labeling the edgesTofLet i (T) be the oriented tree obtained
from h(T) by inverting orientation on all edges labeled witfl. The &-structures in-
duces aw-structures’ on hy(T) by keeping the labels of the vertices and the embedding
into R2.

We define an R-linear homomorphism pgr: 7(®) — To(¥) by pr(T s) =
sign,(7)(s(T). 5).

Lemma 6.2.2. The homomorphismrr : 7(®) — To(¥) is a Lie coalgebra homomor-
phism

The proof is an exercise on the definitions.
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6.3. Homomorphismg

We define a Lie coalgebra homomaorphigg: Lo — T o(¥) (a version ofy for non-
pointed loops). For a loop : S — =, set

no(@) = Y T € To(¥)

H=<a

whereTy is the planar (non-rooted) tree determinedHbyThe labels of the vertices of
Ty are as irSection 5.1 The edges of’y are oriented as follows. For a crossipg: #a,
we orient the segmert, C D? from p' to p? (in the notation introduced in the proof of
Lemma 6.1.}and orient the edgep] C Ty C D? so that the pair (], e,,) determines the
counterclockwise orientation d@d?. (By the definition of p], it intersectse, transversally
in one point). The next lemma follows directly from the definitions.

Lemma 6.3.1. The following diagram is commutative

c B o

ni d no
T(®) 5 Tow).

Theorem 6.3.2.1 is a Lie coalgebra homomorphism

Proof. By the results abovg and pr- are Lie coalgebra homomorphisms. Hence, so is
noopr=prron: L — To(¥). Since pr:.L — Lo is a surjectionyg is a Lie coalgebra
homomorphism. O

Remark 5.2.\applies in this setting with obvious changes.

6.4. Related pre-Lie and Lie coalgebras

The constructions above can be adapted to so-called virtual stringd,0G3eén open
(resp.closed virtual string of rank nis a subset of ]01[ (resp. ofS?) consisting of 2
distinct points partitioned into ordered pairs. These pairs are calldws The set of
arrows of a virtual string is denoted arg(). Two open (resp. closed) virtual stringsb are
homeomorphid there is an orientation preserving self-homeomorphism pt[@resp. of
s transforminga into b.

Pick an arrowe of an open virtual string with endpointsps, p2 €]0, 1[ numerated so
that p1 < po. Sete, = 1 if eis directed fromp1 to p» ande, = —1 otherwise. Denote by
a% (resp.af) the virtual string obtained frora by removinge and all other arrows with at
least one endpoint on JQ[—[ p1, p2] (resp. on p1, p2]). The formula

p(a) = Z g.at @ a?

ecarr(a)
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defines a pre-Lie comultiplication in thB-module S freely generated by the set of
homeomorphism classes of open virtual strings. This comultiplication is connected with
obvious multiplication inS given by concatenation of open strings. Namel{gb) =
p(@Ab)+ (L®a)p) fora,b e S.

Closed virtual strings can be obtained from the open ones by gluing 0 and 1. This gives
a projection fromsS to the similar moduleSy generated by homeomorphism classes of
closed virtual strings. The pre-Lie comultiplication does not survive this operation but the
associated Lie cobracket survives. The homomorphigiasdng have their analogues: a
pre-Lie coalgebra homomorphissh— 7 (®’) and a Lie coalgebra homomorphistg —
To(¥'), whered’ is a rooted tree-structure combining a labeling of edges:-bywith a
planar structure an#’ is a planar structure.

Finally, observe that there is a projection from the coalgebras of loops on an oriented
surfaceX into the coalgebras of virtual strings. The key observation is that every pointed
loopa on T determines an open virtual stringy) formed by the ordered pairgt, p?) with
p € #a. Here, we identifySt — o—1(x,) with ]0, 1[ via an orientation preserving homeo-
morphism. The formula + a(«) defines a pre-Lie coalgebra homomorphi§tx) — S.

It is in general neither surjective nor injective. In particular, pointed loop&Zaelated
by the action of the mapping class group have the same imagesTime homomorphism
L(X) — Sinduces aLie coalgebra homomorphigg(X) — Sp. We also have the obvious
forgetting homomorphismg (@) — 7(®') andT o(¥) — T o(¥’) making all the natural
diagrams arising here commutative.

7. Lie bialgebra of loops

We relate the Lie coalgebidg = Lo(X) to the Lie bialgebra of loops oR introduced
in[7,8].

7.1. Lie coalgebr&Z = Z(%)

Loopse, on Y arefreely homotopiif there is a mapping : S x [0, 1] — = suchthat
a(a) = f(a, 0) andp(a) = f(a, 1) for alla € S*. Free homotopy is an equivalence relation
on the set of loops. The corresponding set of equivalence classes is dénstédx).
This set has a distinguished elemegtrepresented by an embeddisg < X onto the
boundary of a small disk i&@. For connected, the setr can be identified with the set of
conjugacy classes in the fundamental graugpf 3.

LetZ be theR-module freely generated by the getSince isotopic loops are homotopic,
assigning to an isotopy class of loops the underlying homotopy class we obtaitirerar
homomorphismP : Lo — Z. The Lie cobrackevg in Lo cannot directly induce a Lie
cobracket irZ because of the following obstruction. Consider a laaps® — ¥ and insert
a smallg-like cirl on the right ofa. This gives a new loopy’, homotopic tow. It is clear
from formula(6.1.1)that

(P ® P)vo(a) = (P ® P)v(er) + o ® P(ar) — P(ar) ® arp # (P ® P)vo(a)
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This obstruction can be circumventasfollows. betZ — Z be theR-linear endomorphism
defined byg(a) = a for all a € 7 — {ap} andg(wo) =

Lemma 7.1.1. ([7,8]). The following formula defines a Lie cobracket: Z — Z%2:

petta

vz(e) = (g ® g) (Z Qpl 2 @2 p1 — 02 ;1 @1 pz) (7.2)

Formula(6.1.1)implies thatgP : Lo — Z is a Lie coalgebra homomorphism. The map
Lo — To(¥) does not survive the factorization of loops by homotopy: the linear combi-
nation of trees associated with a loop may change drastically under homotopy. However,
there appears another fundamental structure described next.

7.2. Goldman’s Lie bracketin Z

Goldman[5] defined a Lie bracket [,] itz as follows. (A related Lie algebra is im-
plicit in the earlier paper of Wolpefi.2].) Let «, 8 be two loops orz. Applying a small
isotopy toa we can assume thatmeetsg transversally at a finite number of points dis-
tinct from self-intersections af, 8. Denote the (finite) sek(S1) N B(S1) by a#p. Each
point p € o#p is a double transversal intersectioncofind 8. Let (o - ), = +1 denote
the intersection index of and 8 at p. Smoothing the set(S1) U (S1) atp we obtain a
loop onX denoted ¢B),. This smoothing replaces thélike crossing ap by two dis-
joint arcst4 so that arriving to a neighborhood pfalonga (resp.g) one leaves along
(resp.a). Set

[e. Bl= > (- B)pleB)y

pea#p
Extending by bilinearity we obtain a bracket [,]2h
Theorem 7.2.1[5] [,] is a well defined Lie bracket in.Z

To explain the connection between the Lie cobracketind Goldman’s Lie bracket,
we recall the notion of a Lie bialgebra due to V. Drinfeld.l4e bialgebraover R is
an R-module A endowed with a Lie bracket [,] and a Lie cobracketA — A®2 such
that v([x, ¥]) = xv(y) — yv(x) for any x, y € A. Here,A acts onA® A by x(y ® z) =
[x, V]®z+y®[x, 2]

Theorem 7.2.2.([7,8]). The triple(Z, [, ], vz) is a Lie bialgebra

This bialgebra has a topological quantization (in fact, a biquantization) in terms of a Hopf
algebra of skein classes of oriented links3inx R. It is curious to note that this algebra
acts on the spaces of conformal blocks associated Yvitly appropriate two-dimensional
modular functors.



V. Turaev / Journal of Geometry and Physics 53 (2005) 461482 475
8. Hopf algebras of trees and loops
8.1. Symmetric algebras
Given anR-moduleA, one has its symmetric algebra
S(A) = @,>05"(A)

where $9(A) = R, S1(A) = A, and §"(A) is the nth symmetric tensor power ok for
n > 2. The algebr&(A) is commutative and associative and has a uritR = S°(A). The
projectionS(A) — S°(A) = R along®,>15"(A) is called theaugmentation

If Ais a free module with basis:;};, thenS(A) can be identified with the polynomial
algebraR[{x;};].

8.2. Connes—Kreimer Hopf algebras

Consider the symmetric algeb§&7) whose elements are polynomials on rooted trees
with coefficients irR. (The unit 1e S%(7) can be thought of as an empty tree.) Connes and
Kreimer[2] defined a non-cocommutative comultiplicationsi(i/) which makes it into a
bialgebra. We recall their definition extending it (in a straightforward way) to the setting of
rooted trees with structure. Fix a rooted tree-strucgur simple cubf a rooted tred is a
setc C edg(l’) suchthat any embedded path leading from the ro®@tofa vertex ofl meets
at most one element of Removing fronl all (open) edges belonging to a simple cute
obtain a set of disjoint subtreesfOne of them denotel} contains the root of. The other
subtrees$T,}.c. are numerated by the elementgsb that each € ¢ connects a vertex @
to a vertex off,. Recall that all subtrees @fare rooted in a canonical way. Roe ¢(T), set

(T, 5) = [ [(Te, sIz,) € ST (@), rel(T: s) = (To, sln) € SUT ()

ecc

Set
V(T.5) = (L) ® L+ ) 1T 5) ® re(T. s) (821)

wherec runs over all simple cuts df. Note that the termy. ® r. corresponding te = @ is
equal to 1® (T, s). Formula8.2.1definesV on the generators of the algelffa= S(7 (¢));

it extends uniquely to an algebra homomorphiSm § — S ® S. It follows from the
definitions that the augmentatioh— R is a counit ofV. Connes and Kremer proved that
V is coassociative. They also explain that the resulting bialg&tfdy)) has an antipode
and is thus a Hopf algebra.

8.3. Hopf algebra of pointed loops

Consider the symmetric algebfa= S(£) wherel = £(X) is theR-module freely gen-
erated by isotopy classes of pointed loops on an oriented suHa&gements ofS are
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polynomials on isotopy classes of pointed loopsowith coefficients inR. We define a
comultiplicationA in Sas follows. Pick a pointed loapon . Recall the segments,, } )<

in the unit diskD and theH-faces ofD determined by a cull < «, cf. Sections 3.1 and 5.1
Let v(H) denote the rodt-face, i.e., the onlyi-face containing:—1(x,) € dD.Forp € H
denote byv(H, p) the uniqueH-face adjacent te,, and such that(H, p) andv(H) lie on
different sides of the line containing,. The formulap — v(H, p) establishes a bijection
betweerH and the set oH-faces distinct fromy(H). For anyH-facev denote by, the
associated pointed loop ai Set

(@) = [ [ ety €S rul@) =y e LC S
peH

A cutH of « is simpleif all segmentde,} ,cz are adjacent to(H). To indicate thatl is a
simple cut ofe we write H <« «. Set

Al)=a® 1+ Z eglp@@ry(@) e S® S
H<a

whereegy = ]'[peH ep. Note that the termey In(a) @ ru(a) corresponding tdd = 9 is
equal to 1R a.

This definesA on the generators & it extends uniquely to an algebra homomorphism
A:S—>S®S.

Lemma 8.3.1. A is coassociative

Proof. It suffices to prove that (i A)A(x) = (A ® id)A(e) for any pointed loopx on
3. Set

A=(@d® A)A(@) — Al@) @1 B=(A®id)A) — Ale) ® 1.

We shall prove thatd = B. To this end, we define another expressidmand prove that
A=C=B.

Forsimple cut$; « o, G’ K a,wewriteG’ < Gif v(Ga) C v(G). Then,G U G’ C #a
is a cut ofw. Its faces are th&-faces{v(G U G’, p) = v(G, p)}yec and the faces obtained
by splitting v(G) along the segmentg,},cc'—c, specifically,{v(G U G', ¢)}4ec'—c and
v(G’). (Note thatG' — G = G’ — (G N G’).) Set

®3
C= Z EGUG’ H Qy(G,p) @ l_[ Ay(GUG'.q) ® Au(G)) € S
G,G'<Kas.t.G'<G peG qeG'—-G

We claim thatd = C. If follows from the definition ofA that

A=Y e Y enln(@) ® (@) ® ri(ru(e))

H<a H'&ry(a)
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The formula G, G") — (H = G, H = G’ — G) defines a bijective correspondence be-
tween pairs ¢ < a, G’ <€ «) such thatG’ < G and pairs i < o, H < rg(a)). The
corresponding terms & andC are equal. The equality of signs follows from the formula
eGuG’ = €G €Gg'—G = €gep - ThereforeA = C.

We claim thatB = C. If follows from the definition ofA that

B = Z EH 1_[ Oy(H,p) @ 14 Z EH,,IH,,(av(H,p)) ®er(05v(H,p)) ®rH(a)

H<a peH Hp<Layn,p)
=D en ), Yoo eum [ [Tewma [T 1o, uwmm)
H<a  ICH {H,<ayH,p)}peH—1 qel peH—I

® l_[ ru,(@u(H,p) @ ra(a)
peH—-I

With each tuple § <« o, I C H, {H, < ay(#,p)}qeH—1), WE associate the paiG(= 7 U
Upen—1Hp, G’ = H). This defines a bijective correspondence between such tuples and the
pairs G < «, G’ < a) such thatG’ < G. The corresponding terms BfandC are equal.

The equality of signs follows from the formu@u G’ = H U U,y H,, and the fact that

the setd H,} ,ep—1 andH are pairwise disjoint. Therefor® = C. O

Itis clear that the augmentatien S — R is a counit ofA. The bialgebrag, A) has an
antipodes. This is an algebra endomorphism@®determined on a generat@by induction
on|a| = card(#): if o] = 0, thens(«) = —«, if |a] > 1, then

s(a) = —a — Z e lu(a)s(ru(e)) € S

H<a, H#)

where we use thdiry(«)| < |a|. These formulas guarantee thafids ® s)A(x) = &(w),
wheremis multiplication inS. In other wordssis a left inverse of ig with respect to the con-
volution productx in Homg(S, S) defined byf* g = m(f ® g)A for f, g € Homg(S, S).
Similar inductive formulas show that ¢dhas a right inverse’ € Homg(S, S) and then
s =sx* (idg xs’) = (s xidg) x s/ = s'. Thereforesis an antipode fo&.

8.4. Homomorphism

The R-linear homomorphisny : £ — T (&) defined inSection 5.1extends by multi-
plicativity to an algebra homomorphiss{£) — S(7 (®)) also denoted.

Theorem 8.4.1.7 is a Hopf algebra homomorphism

Proof. We need to show tha& (n(«)) = (1 ® n)(A(x)) for any pointed loopr : St — X.
Seta = V(n(@)) — n(e) ® 1 andb = (n ® n)(A(x) — ¢ ® 1). It is enough to check that
a=hb.

Consider a cuH C #« of @ and a subsett C H such thatG is a simple cut of. The
cut G determines a simple cu{G, H) of the treeTy = Ty(«) consisting of the edges
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{{p)}peG. (This establishes a bijection between simple cutszpaind subsets dfl which
are simple cuts of.) Set

(G, H) = l6,1)(TH) ® re¢,m)(Th) € S(T(P)) ® T(P).

By abuse of notation we do not specify thestructure on the trees on the right-hand side;
it is induced by the one ofiy. It is easy to deduce from the definitions that

b=y e » enc(GH=Y ey Y (GH=a

G<La GCH<« H<a GCH s.t.GKLa

Thus,n is a bialgebra homomorphism. Finally, any bialgebra homomorphism of Hopf
algebras is a Hopf algebra homomorphism, [§elLemma 4.0.4. O

8.5. Non-commutative Hopf algebra of loops

Given anR-moduleA, one has its tensor algebf{A) = @,-0A%", whereA®C = R,
A®l = A, andA®” with n > 2 is the tensor product ov& of n copies ofA. The product
in T(A) is defined by

(@1®  @an)(an+1® - @ apim) =a1® - @ dpym

foray, ..., an4m € A. Inthe sequel instead of ® - - - ® a,, we write[ [, a;. The algebra
T(A) is associative and has a uniclR = A®°. The identity mapA — A extends to a
surjective algebra homomorphisfi{A) — S(A). If Ais a free module with basig;};,
then T(A) is the algebra of non-commutative polynomials in the varialjlel with
coefficients inR.

Consider the tensor algebfa= T(£), whereL = L£(X). Observe that any simple cut
H c #a of a pointed loog is totally ordered in a canonical way. Namely starting at the base
pointx, and moving along the loop we meetfirsta certain poikt bfiice, then another point
of Htwice, etc. The resulting order dhallows usto selty («) = [ | oy(H,p) € Lo T.
The formula

peH

Aa)=a®1+ Z en ln(0) ® ru(a)
H<La

defines amag — T ® T. It extends to an algebra homomorphism 7' — T ® T. The
same argument as in the proofl&fmma 8.3hows thafA is coassociative. In this argument
in the expressions faf, B, one should use the orders@ — G andH — I (needed in the
second tensor factor) induced by the order§iandH respectively. In the expression fBr
one should replacg],,c; av(rg) [ 1 e p—1 L, (v(, p)) With [,y ap, Wherea, = ay(n, p)
for p e I'anda, = Iy, (av(m.p)) for p e H — 1.

The projection” — R along®,>1L®" is a counit of T. The existence of an antipode
in T is straightforward. It is clear that the natural projectibn> S(£) is a Hopf algebra
homomorphism.
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A non-commutative analogue gfs a Hopf algebra homomorphisirfrom T to Foissy’s
[3] non-commutative Hopf algebfd p r(®) generated by rootedt-trees. Note that Foissy
considers planar rooted trees with labeled vertices but nothing prevents from extending his
definitions to the case where the edges are also labeled. (Alternatively, one may observe
that the edges of a rooted tree are numerated by the vertices distinct from the root so that
a labeling of the edges can be interpreted as a labeling of the vertices.) The valoa of ~
the generators of = T(£) is given by formula(5.1.1) We have a commutative diagram
of Hopf algebra homomorphisms

T(L) % Hp p(@)
! !
S(L) 2 S(T (@)

where the vertical arrows are the natural projections.

8.6. Remark

As in Remark 5.2.3for anya, b € R, we can replace everywhere (and in particular
in the definition ofey) the signe, with a + be),. This yields a two-parameter family
of coassociative comultiplicationa? in S(£) (resp. A%? in T(£)) and Hopf algebra
homomorphisms from the resulting Hopf algebrast@ (®)) (resp. toH p gr(P)).

9. Further algebras

In analogy with tree-structures, we can introduce axiomatically certain “structures” on
loops suitable for a generalization of the comultiplicatiengt defined above. Instead of
doing this here, we focus on two specific additional structures on loops and briefly discuss
the associated algebras.

9.1. Algebras of Wilson loops

By aregionof a (generic) loopr : S — X on an oriented surfacg, we mean a con-
nected component & — «(S1). A Wilson loopis a loop onZ whose regions are endowed
with numbers (say, real or complex). The number associated with a region is cafleshits
A Wilson loop ispointedif its underlying geometric loop is pointed. Isotopy of (pointed)
Wilson loops is defined in the obvious way, the areas being preserved under ambient iso-
topies and reparametrizations.

For a Wilson loopx and a crossing e #a, both loopsw,, ,, anda,,, ,, appearing in
Section 3.2become Wilson loops as follows. The area of a regfoaf o, ,, (resp. of
o p,. py) IS SEt to be the sum of the areas of regiona abntained inX.

Let W be theR-module freely generated by the set of isotopy classes of pointed Wilson
loops. The definition of the pre-Lie comultiplication@ection 3.2applies to Wilson loops
word for word and gives a pre-Lie comultiplication . In analogy withSection 6 the
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associated Lie cobracketirinduces a Lie cobracket ing, theR-module freely generated

by the set of isotopy classes of non-pointed Wilson loops. Forgetting the areas we obtain a
pre-Lie coalgebra homomorphisti — £ and a Lie coalgebra homomorphisty — Lo.
Similarly, the definition ofA in Section 8applies to Wilson loops and gives Hopf algebra
structures inS(W) andT (W) and a commutative diagram

TOV) - T(L)
| \:
SOV) — S(L)

of surjective Hopf algebra homomorphisms. The comultiplication/irs(W), T(W) can
be included in a 2-parameter family of comultiplicatiopfs?, A%, A% as in Remarks
5.2.3 and 8.6.

9.2. Algebras of knot diagrams

A knot diagramon an oriented surfacE is a (generic) loopx : S* — ¥ such that
each crossing € #« is endowed with a sigm, = +1. The equivalence with the more
standard language of over/undercrossings is established as follows. Recall that two branches
of « passing througlp € #o have an order determined by the orientationsb{cf. the
proof of Lemma 6.1.1 Then, the first branch goes over (resp. under) the second branch
if u, =1 (resp. ifu, = —1). Note that by the definition of a loop, our knot diagrams are
oriented.

Aknot diagram ipointedif its underlying geometric loop is pointed. Isotopy of (pointed)
knot diagrams is defined in the obvious way, the signseing preserved under ambient
isotopies and reparametrizations.

Let D be theR-module freely generated by the set of isotopy classes of pointed knot
diagrams. Pick four elemenis b, ¢, d € R. For a pointed knot diagraia and a crossing
p € #a, both loopsa,,, ,, andap, ,, appearing inSection 3.2become knot diagrams:
their self-crossings are also self-crossings @fnd we attribute to them the same signs
Set

PPN, wa) = Y (@t bep + cpp +depitp) (@py, pas P) © (@p,pys %a).
peta

This defines a pre-Lie comultiplicatiopt-><? : D — D @ D. Note that multiplying all
signsy., by —1 we obtain an isomorphisn® pt-¢4) ~ (D, pb=¢=4). Forc = d = 0,
this defines an involution irig, p%2:0.9),

Similarly, the definition ofA in Section 8can be applied to pointed knot diagrams
and gives Hopf algebra comultiplications®?-<4 in S(D) and A%?<4 in T(D). (It is
understood that we replace everywhegewith a + be, 4 citp, + dep 1 p.) The definitions
of n, 7 also apply and yield a pre-Lie coalgebra homomorphi®me-?-¢4) — T (&) and
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a commutative diagram of Hopf algebra homomorphisms

(T(D), A%P¢4) — H p p(P)

¢ ¥
(S(D), A4>4) — S(T(@)).

Fora = ¢ = 0, the Lie cobracket ifd associated withh®?-<-¢ induces a Lie cobracket
in Do, theR-module freely generated by the set of isotopy classes of non-pointed knot dia-
grams. Ifadditionally/ = 0, b = 1, then we have aforgetting Lie coalgebra homomorphism
Do — Lo.

9.3. Homomorphisms

The pre-Lie algebrag, W, D are related by three pre-Lie algebra homomorphisms:
(L, 0°7) = (D, p*"0%) — (W, p™*) — (L, o). (9.3.1)

We describe them on the generators. The leftmost homomorphism is obtained by attributing
u = +1 to all crossings of a pointed loop. The rightmost homomorphism is obtained by
forgetting the areas. The middle homomorphiBm> W comes from the theory of shadow
knots[9]. It transforms a pointed knot diagram (1) into a pointed Wilson loop as follows.
A crossingp € #a is adjacent to four (possibly coinciding) regioRs, . . ., R4 of @ which
we numerate so thad lies between the outgoing branches@ltp andR3 lies between the
incoming branches af atp while R2, R4 are the two remaining regions. Th@rgontributes
(—1)"+1up/2 to the area oRy for k = 1, ..., 4. The area of a region of is defined to be
the sum of the contributions of the crossingsx@djacent to this region. The maketo
a pointed Wilson loop.

It is clear that the composition of the three homomorphism®i8.9) is the identity
map. These homomorphisms induce Hopf algebra homomorphisms

(S(L), A“P) — (S(D), A“P00) — (S(W), A%P) — (S(L), A“P)

and similar Hopf algebra homomorphisms withA replaced byr, A.
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